Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyền Hoàng Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 2 2023 lúc 21:02

a: AC-BC<AB<AC+BC

=>5<AB<8

mà AB>6

nên AB=7cm

b: AB-AC<BC<AB+AC

=>2<BC<14

mà BC<4

nên BC=3cm

ILoveMath
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 7 2021 lúc 21:54

Kẻ đường cao AD, đặt \(AB=x>0\) ; \(BD=y>0\)

\(\Rightarrow AC=12-x\) ; \(CD=8-y\)

Trong tam giác vuông ABD:

\(BD=AB.cosB\Leftrightarrow y=x.cos60^0=\dfrac{x}{2}\) \(\Rightarrow CD=8-\dfrac{x}{2}\) 

Theo định lý Pitago:

\(\left\{{}\begin{matrix}AD^2=AB^2-BD^2\\AD^2=AC^2-CD^2\end{matrix}\right.\) \(\Rightarrow AB^2-BD^2=AC^2-CD^2\)

\(\Leftrightarrow x^2-\left(\dfrac{x}{2}\right)^2=\left(12-x\right)^2-\left(8-\dfrac{x}{2}\right)^2\)

\(\Leftrightarrow16x-80=0\)

\(\Rightarrow x=5\)

Vậy \(\left\{{}\begin{matrix}AB=5\\AC=7\end{matrix}\right.\)

Nguyễn Việt Lâm
18 tháng 7 2021 lúc 21:54

undefined

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 7 2017 lúc 18:30

Chọn A.

Nga Nguyễn
Xem chi tiết
Minh Nhân
24 tháng 3 2021 lúc 19:39

Anh bổ sung là : AH vuông góc với BC nhé 

\(BC=HB+HC=2+8=10\left(cm\right)\)

\(\text{Áp dụng định lý Pytago trong tam giác ABC vuông tại A:}\)

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AB=\sqrt{BC^2-AC^2}=\sqrt{10^2-6^2}=8\left(cm\right)\)

ひまわり(In my personal...
24 tháng 3 2021 lúc 19:40

Bổ sung đề \(AH\) là đường cao.

Áp dụng hệ thức lượng vào tam giác vuông \(ABC\) và đường cao \(AH\) ta có :

\(AB^2=BC.BH\)

\(\Rightarrow AB=\sqrt{BC.BH}=\sqrt{\left(8+2\right).2}=\sqrt{20}=2\sqrt{5}\)\((cm)\)

Nguyễn Việt Lâm
24 tháng 3 2021 lúc 19:53

Đề bài sai rồi em

Nếu H là chân đường cao trên BC thì tam giác HAC vuông tại H

Khi đó trong tam giác vuông HAC có AC là cạnh huyền và CH là cạnh góc vuông

Nhưng CH=8>AC=6 là hoàn toàn vô lý

VŨ HIẾU -8A
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 3 2022 lúc 8:37

a: AD=AB-BD=6(cm)

=>AD/AB=3/4

AE/AC=9/12=3/4

b: Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc A chung

Do đó:ΔADE\(\sim\)ΔABC

Đặng Quốc Đạt
Xem chi tiết
Nguyễn Ngọc Huy Toàn
14 tháng 2 2022 lúc 15:25

Áp dụng định lý pitago ta có

\(AC^2=AB^2+BC^2\)

\(AB^2=AC^2-BC^2\)

\(AB=\sqrt{12^2-8^2}=\sqrt{80}=4\sqrt{5}cm\)

Dark_Hole
14 tháng 2 2022 lúc 15:25

Dùng py ta go ta có AC2-BC2=AB2=122-82=144-64=80=4 căn 5

Chúc em học tốt

Phan Huy Bằng
14 tháng 2 2022 lúc 15:25

Nguyễn Thị Ánh Tuyết
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 22:36

a: Xét ΔMBA và ΔMCE có

MB=MC

góc BMA=góc CME

MA=ME

=>ΔMBA=ΔMCE
b: ΔMBA=ΔMCE

=>góc MBA=góc MCE

=>AB//CE
c: AB<AC<CB

=>góc C<góc B<góc A

Nguyễn Thị Thu Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 4 2021 lúc 20:23

a) Xét ΔABC vuông tại A và ΔHAC vuông tại H có 

\(\widehat{C}\) chung

Do đó: ΔABC\(\sim\)ΔHAC(g-g)

Nguyễn Lê Phước Thịnh
29 tháng 4 2021 lúc 20:25

b) Áp dụng định lí Pytago vào ΔACB vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{BD}{6}=\dfrac{CD}{8}\)

mà BD+CD=BC=10cm(D nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{6}=\dfrac{CD}{8}=\dfrac{BD+CD}{6+8}=\dfrac{10}{14}=\dfrac{5}{7}\)

Do đó: \(\dfrac{BD}{6}=\dfrac{5}{7}\)

hay \(BD=\dfrac{30}{7}cm\)

Vậy: \(BD=\dfrac{30}{7}cm\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 1 2018 lúc 10:56