Cho hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên BC; AC vuông góc với AD.
a) Tính các góc của hình thang
b) Chứng minh DC=2AB
Bài 3: Cho hình thang cân ABCD. Đáy nhỏ AB bằng cạnh bên BC và đường chéo AC vuông góc với cạnh bên AD.
a) Tính các góc của hình thang cân.
b) Chứng minh rằng trong hình thang cân đó đáy lớn gấp đôi đáy nhỏ.
Cho hình thang cân ABCD có đáy nhỏ AB=1, đáy lớn CD=3, cạnh bên B C = D A = 2 . Cho hình thang đó quay quanh AB thì được vật tròn xoay có thể tích bằng:
A. 4 3 π .
B. 5 3 π .
C. 2 3 π .
D. 7 3 π .
Đáp án D
Ta có: A E = B F = 1
Khi đó: D E = A D 2 − A E 2 = 1
Khi quay hình chữ nhật DEFC quanh trục AB ta được hình trụ có thể tích là:
V 1 = π D E 2 . D C = π .1 2 .3 = 3 π
Khi quay tam giác AED quanh trục AB ta được hình nón có thể tích là:
V 2 = 1 3 π D E 2 . A E = 1 3 π .1 2 .1 = π 3

Do đó thể tích vận tròn xoay tạo thành khi cho hình thang quay quanh AB là:
V = V 1 − 2 V 2 = 7 π 3
Cho hình thang cân ABCD có đáy nhỏ A B = 1 ; đáy lớn C D = 3 , cạnh bên B C = D A = 2 . Cho hình thang đó quay quanh AB thì được vật tròn xoay có thể tích bằng
A. 4 3 π
B. 5 3 π
C. 2 3 π
D. 7 3 π
Cho hình thang cân ABCD có đáy nhỏ AB =1 đáy lớn CD =3, cạnh bên B C = D A = 2 . Cho hình thang đó quay quanh AB thì được vật tròn xoay có thể tích bằng
A. 5 3 π
B. 4 3 π
C. 7 3 π
D. 2 3 π
Chọn đáp án C

Gọi H, K lần lượt là hình chiếu của A và B trên cạnh CD.
Suy ra ABHK là hình chữ nhật và AB =HK = 1
Quay hình thang ABCD quanh cạnh AB, ta được một khối tròn xoay có thể tích là V = V 1 - 2 V 2 Trong đó:
+ V1 là thể tích của khối trụ có bán kính đáy r =AH =1 chiều cao h =CD =3
Ta có V = V 1 - 2 V 2 (đvtt).
+ V2 là thể tích của khối nón có bán kính đáy r =AH -1; chiều cao h ' = D H = 1
Ta có V 2 = 1 3 πr 2 h ' = 1 3 π đvtt (đvtt).
Vậy thể tích khối tròn xoay cần tính là V = 3 π - 2 . 1 3 π = 7 3 π (đvtt)
Cho hình thang cân ABCD có đáy nhỏ A B = 1 , đáy lớn C D = 3 , cạnh bên B C = D A = 2 . Cho hình thang đó quay quanh AB thì được vật tròn xoay có thể tích bằng:
A. 4 3 π
B. 5 3 π
C. 2 3 π
D. 7 3 π
Đáp án D

Ta có A E = B F = 1 Khi đó D E = A D 2 − A E 2 = 1
Khi quay hình chữ nhật DEFC quay trục AB ta được hình trụ có thể tích là: V 1 = π . D E 2 . D C = π 1 2 .3 = 3 π
Khi quay tam giác AED quanh trục AB ta được hình nón
có thể tích là V 2 = 1 3 π . D E 2 . A E = 1 3 π .1 2 .1 = π 3 . Do đó thể tích vật tròn xoay tạo thành khi cho hình thang đó quay quanh AB là: V = V 1 − 2 V 2 = 7 π 3 .
cho ht cân ABCD có đáy nhỏ Ab=cạnh bên BC đường chéo ac vuông góc với cạnh bên ad.
a, tính các góc của hình thang cân
b,CMR trong hình thang ABCD đáy lớn gấp dôi đáy nhỏ
Cho hình thang cân ABCD. Biết đáy nhỏ AB = 3cm, cạnh bên BC = 2cm, đáy lớn CD = 5cm. Chu vi hình thang cân ABCD là:
Vì tứ giác ABCD là hình thang cân (gt).
=> AD = BC (Tính chất hình thang cân).
Mà BC = 2 (cm).
=> AD = 2 (cm).
Chu vi hình thang ABCD là:
AB + CD + BC + AD = 3 + 5 + 2 + 2 = 12 (cm).
p hình thang cân là :
3 + 5 + 2 + 2 = 12 cm
Đ/S : 12 cm
Cho hình thang cân ABCD đáy nhỏ AB = 4cm, đáy lớn CD = 10cm, cạnh bên BC = 5cm thì đường cao AH bằng:
A. 4,5 cm.
B. 4 cm.
C. 3,5 cm.
D. 3 cm.
Đáp án cần chọn là: B

Kẻ BK ⊥ DC tại K.
Vì ABCD là hình thang cân nên ta có D ^ = C ^ ; AD = BC
=> ΔAHD = ΔBKC (ch – gn) => DH = CK
Suy ra DH = 1 2 (CD – AB)
Suy ra DH = 1 2 (CD – AB) = 1 2 (10 – 4)
Do ABCD là hình thang cân nên AD = BC = 5 cm
Áp dụng định lí Py-ta-go vào tam giác ADH vuông tại H ta có
A D 2 = A H 2 + D H 2 ⇒ A H 2 = A D 2 - D H 2 = 5 2 - 3 2 ⇒ A H = 4
Vậy AH = 4cm.
Cho hình thang cân ABCD đáy nhỏ AB = 12cm, đáy lớn CD = 22cm, cạnh bên BC = 13cm thì đường cao AH bằng:
A. 9 cm.
B. 8 cm.
C. 12 cm.
D. 6 cm.
Đáp án cần chọn là: C

Ta có DH = 1 2 (CD – AB) = 1 2 (22 – 12)
Do ABCD là hình thang cân nên AD = BC = 13 cm
Áp dụng định lí Py-ta-go vào tam giác ADH vuông tại H ta có
A D 2 = A H 2 + D H 2 ⇒ A H 2 = A D 2 - D H 2 = 13 2 - 5 2 ⇒ A H = 12
Vậy AH = 12cm.
Cho hình thang cân ABCD có đáy nhỏ AB = cạnh bên BC dường chéo AC vuông góc với cạnh bên AD.
a, Tính các góc trong hình thang cân đó