Một hình thang vuông ABCD có đường cao A D = π , đáy nhỏ A B = π , đáy lớn C D = 2 π . Cho hình thang đó quay quanh CD, ta được vật tròn xoay có thể tích bằng:
A. 4 3 π 4
B. 7 3 π 4
C. 10 3 π 4
D. 13 3 π 4
Cho hình thang cân ABCD có đáy nhỏ AB=1, đáy lớn CD=3, cạnh bên B C = D A = 2 . Cho hình thang đó quay quanh AB thì được vật tròn xoay có thể tích bằng:
A. 4 3 π .
B. 5 3 π .
C. 2 3 π .
D. 7 3 π .
Cho hình thang cân ABCD có đáy nhỏ AB =1 đáy lớn CD =3, cạnh bên B C = D A = 2 . Cho hình thang đó quay quanh AB thì được vật tròn xoay có thể tích bằng
A. 5 3 π
B. 4 3 π
C. 7 3 π
D. 2 3 π
Cho hình thang cân ABCD có đáy nhỏ A B = 1 , đáy lớn C D = 3 , cạnh bên B C = D A = 2 . Cho hình thang đó quay quanh AB thì được vật tròn xoay có thể tích bằng:
A. 4 3 π
B. 5 3 π
C. 2 3 π
D. 7 3 π
Cho hình thang vuông ABCD có đường cao AD=1 , đáy nhỏ AB=1, đáy lớn CD = 2 . Cho hình thang đó quay quanh AB ta được khối tròn xoay có thể tích bằng
A. 4 π 3 dvtt
B. 5 π 3 dvtt
C. π 3 dvtt
D. 2 π 3 dvtt
Cho hình thang vuông ABCD có đường cao A D = 1 , đáy nhỏ A B = 1 , đáy lớn C D = 2 . Cho hình thang đó quay quanh AB ta được khối tròn xoay có thể tích bằng
A. 5 π 3 d v t t
B. 2 π 3 d v t t
C. π 3 d v t t
D. 4 π 3 d v t t
Cho hình thang cân ABCD có các cạnh đáy AB = 2a, CD = 4a và cạnh bên AD = BC = 3a. Tính theo a thể tích V của khối tròn xoay thu được khi quay hình thang cân ABCD quanh trục đối xứng của nó.
A. V = 4 3 πa 3
B. V = 4 + 10 2 3 πa 3
C. V = 10 2 3 πa 3
D. V = 14 2 3 πa 3
Trong không gian với hệ tọa độ Oxyz, cho hình thang cân ABCD có AB là đáy lớn, CD là đáy nhỏ và A ( 3;-1;-2 ); B ( 1;5;1 ); C ( 2;3;3 ). Tìm tọa độ điểm D của hình thang cân.
A. D ( 4;3;0 )
B. D 164 49 ; 51 49 ; 48 49
C. D 1 2 ; 1 3 ; 1 4
D. D ( -4;3;0 )
Cho một hình thang cân ABCD có cạnh đáy A B = 2 a , C D = 4 a , cạnh bên A D = B C = 3 a . Hãy tính thể tích của khối tròn xoay sinh bởi hình thang đó khi quay quanh trục đối xứng của nó.
A. 4 2 π a 3 3
B. 56 2 π a 3 3
C. 16 2 π a 3 3
D. 14 2 π a 3 3