Cho ΔABC có AB = 3 cm; AC = 4 cm; BC = 5 cm.
a) Chứng tỏ ΔABC vuông tại A.
b) Vẽ phân giác BD (D thuộc AC), từ D vẽ DE ⊥BC (E ∈ BC). Chứng minh DA = DE.
c) ED cắt AB tại F. Chứng minh ΔADF = ΔEDC rồi suy ra DF > DE.
cho ΔABC cân tại A , có AB = 5cm , BC= 6cm . Từ A kẻ AH⊥BC (HϵBC).
a . Tính AH
B. Gọi G là trọng tâm của ΔABC . Trên tia AG lấy điểm D sao cho AG = GD . Tia CG cắt AB tại F . CM BD = \(\dfrac{2}{3}\)CF
C. CM DB+DG>AB
Bài 1:Cho ΔABC có BC=2AB.Gọi M là trung điểm của BC, N là trung điểm của BM.Tia đối tia NA lấy điểm E sao cho AN=EN.
a, CM: ΔNAB=ΔNEM.
b, CM:ΔMAB cân.
c, CM:M là trọng tâm của ΔAEC.
d, CM: AB>2/3 AN.
Bài 2: cho ΔABC vuông tại C, lấy D∈AB sao cho AD=AB. Kẻ qua D đường thẳng vuông góc với AB cắt BC tại E, AE cát CD tại I.
a, CM: AE là phân giác của góc CAB.
b, CM: AD là đường trung trực của CD.
c, So sánh CD và BC
d, M là trung điểm của BC, DM cắt BI tại G. CG cắt DB tại K. CM:K là trung điểm của DB.
giúp mình với❗❗❗❗❗❗
2: Sửa đề: AD=AC
a: Xét ΔACE vuông tại C và ΔADE vuông tại D có
AE chung
AC=AD
=>ΔACE=ΔADE
=>góc CAE=góc DAE
=>AE là phân giác của góc CAD
b: AC=AD
EC=ED
=>AE là trung trực của CD
1:
a: Xét ΔNAB và ΔNEM có
NA=NE
góc ANB=góc ENM
NB=NM
=>ΔNAB=ΔNEM
b: Xét ΔBAM có BA=BM
nên ΔBAM cân tại B
c: Xét ΔCAE có
CN là trung tuyến
CM=2/3CN
=>M là trọng tâm
Cho ΔABC cân tại A có AB>BC, đg cao AH. Trên tia đối của CA lấy F ,trên AB lấy E sao co CF=AE. Kẻ CK⊥AB
a) CM ΔAEC =ΔFCB từ đó =>ΔABF cân
b) CM ΔBCE có 3 gọc lần lượt bằng các góc của ΔABC.
Cho ΔABC cân tại A có AB>BC, đg cao AH. Trên tia đối của CA lấy F ,trên AB lấy E sao co CF=AE. Kẻ CK⊥AB
a) CM ΔAEC =ΔFCB từ đó =>ΔABF cân
b) CM ΔBCE có 3 góc lần lượt bằng các góc của ΔABC.
* Cho ΔABC vuông tại A có B= \(30^0\), AB=6cm
a. Giải ΔABC
b. Vẽ đường cao AH và trung tuyến AM của ΔABC. Tính diện tích ΔAHM
* Cho ΔABC vuông tại A có AB=3 cm, BC=5cm, đường cao AH
a. Tính số đo góc B, C
b. Gọi AE là phân giác của góc A (E ∈ BC). Tính AE
Bài 1:
a: Xét ΔBAC vuông tại A có
\(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{C}=60^0\)
Xét ΔBAC vuông tại A có
\(AB=BC\cdot\sin60^0\)
\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)
Cho ΔABC vuông ở A có AB = 24cm, AC = 32 cm. Trên tia đối của tia AB lấy điểm N sao cho AN = 13,5 cm; trên tia đối của tia AC lấy điểm M sao cho AM = 18cm
a) CM ΔABC đồng dạng ΔAMN
b) MN // BC và MB ⊥ BC
a) Sửa đề: ΔABC\(\sim\)ΔANM
Xét ΔABC vuông tại A và ΔANM vuông tại A có
\(\dfrac{AB}{AN}=\dfrac{AC}{AM}\left(\dfrac{24}{13.5}=\dfrac{32}{18}\right)\)
Do đó: ΔABC\(\sim\)ΔANM(c-g-c)
b) Ta có: ΔABC\(\sim\)ΔANM(cmt)
nên \(\widehat{ABC}=\widehat{ANM}\)(hai góc tương ứng)
mà \(\widehat{ABC}\) và \(\widehat{ANM}\) là hai góc ở vị trí so le trong
nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)
1) cho ΔABC ∼ ΔDEF theo tỉ số đồng dạng k=\(\dfrac{3}{2}\) . Diện tích ΔABC là 27 cm\(^2\), thi diện tích ΔDEF là:
A. 12cm\(^2\) B.24cm\(^2\) C. 36cm\(^2\) D. 18cm\(^2\)
2) ΔABC ∼ΔDEF có AB=3cm, AC=5cm, BC=7cm, DE=6cm. Ta có :
A. DF=10cm B. DF=20cm C. EF=14cm D.EF=10cm
Cho ΔABC vuông tại A đường cao AH, có AB=6cm, AC=8cm. Kẻ HM vuông góc với AB (MϵAB), HN (NϵAC).
a) Cm: ΔABC đồng dạng ΔHAC
b) Tính: BC, AH, MN
c) Cm: AB.AM= AC.AN
d) Tính tỉ số dt ANM/ ABC = ? ; Diện tích ANM= ?
giúp mình câu d thui mn ơi :333, mình cám ơn mn ạ
a) Xét ΔABC vuông tại A và ΔHAC vuông tại H có
\(\widehat{C}\) chung
Do đó: ΔABC\(\sim\)ΔHAC(g-g)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
Cho ΔABC vuông tại A có AB = 9 cm, AC = 12 cm, BC = 15 cm. Trên tia đối của tia AB lấy điểm E sao cho A là trung điểm của BE
a, Chứng minh ΔABC = ΔAEC
b, Vẽ đường trung tuyến BH của ΔBEC cắt cạnh AC tại M. Chứng minh M là trọng tâm của ΔBEC và tính độ dài đoạn CM
c, Từ A vẽ đường thẳng song song với EC, cắt BC tại K. Chứng minh 3 điểm E,M,K thẳng hàng.
a: Xét ΔABC vuông tạiA và ΔAEC vuông tại A có
AB=AE
AC chung
=>ΔABC=ΔAEC
b: Xet ΔCEB có
CA,BH là trung tuyến
CA cắt BH tại M
=>M là trọng tâm
=>CM=2/3*12=8cm
c: Xét ΔCBE có
A là trung điểm của BE
AK//CE
=>K la trung điểm của BC
=>E,M,K thẳng hàng
Cho ΔABC có ba góc nhọn biết AB=4cm và gócC=300 .Đường tròn tâm O đường kính AB cắt các cạnh CA,CB lần lượt tại F và E.Độ dài đoạn thẳng FE bằng
A.2\(\sqrt{3}\)cm B.\(4\sqrt{3}cm\) C.\(\sqrt{3}cm\) D.4cm