Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 10 2017 lúc 14:00

Đáp án D

Do đó PT có 2 nghiệm thuộc khoảng  0 ; π 2

Yuri
Xem chi tiết
Ngô Thành Chung
13 tháng 9 2021 lúc 15:25

\(\dfrac{cos4x}{cos2x}=tan2x\). ĐKXĐ : \(x\ne\dfrac{\pi}{4}+k.\dfrac{\pi}{2}\), k là số nguyên (tức là sin2x khác 1 và -1)

⇒ cos4x = sin2x

⇔ 1 - 2sin22x = sin2x

⇔ 2sin22x + sin2x - 1 = 0 

⇔ \(\left[{}\begin{matrix}sin2x=-1\left(/\right)\\sin2x=\dfrac{1}{2}\left(V\right)\end{matrix}\right.\)

Mà x ∈ \(\left(0;\dfrac{\pi}{2}\right)\)

⇒ \(\left[{}\begin{matrix}x=\dfrac{\pi}{6}\\x=\dfrac{\pi}{3}\end{matrix}\right.\)

 

Lê Duy
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 10 2019 lúc 19:11

\(tan2x=-\sqrt{3}=tan\left(-\frac{\pi}{3}\right)\)

\(\Rightarrow2x=-\frac{\pi}{3}+k\pi\Rightarrow x=-\frac{\pi}{6}+\frac{k\pi}{2}\)

Do \(x\in\left(2000\pi;2018\pi\right)\)

\(\Rightarrow2000\pi< -\frac{\pi}{6}+\frac{k\pi}{2}< 2018\pi\)

\(\Rightarrow4001\le k\le4036\) (đã làm tròn đến phần nguyên)

\(\Rightarrow\) có 36 giá trị

Trên thực tế, với các hàm lượng giác thì miền \(\left(2000\pi;2018\pi\right)\) ko khác gì miền \(\left(0;18\pi\right)\) cả, bạn tính trên \(\left(0;18\pi\right)\) kết quả cũng sẽ y hệt

Quỳnh Võ
Xem chi tiết
Trần Tuệ Nhi
Xem chi tiết
Nguyễn Tùng
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 6:31

ĐKXĐ: ...

a/ \(\frac{sin2x}{cos2x}+\frac{cosx}{sinx}=8cos^2x\)

\(\Leftrightarrow sin2x.sinx+cos2x.cosx=8cos^2x.sinx.cos2x\)

\(\Leftrightarrow cosx=4sin2x.cos2x.cosx\)

\(\Leftrightarrow cosx=2sin4x.cosx\)

\(\Leftrightarrow cosx\left(2sin4x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin4x=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)

b/ \(\frac{cosx}{sinx}-\frac{sinx}{cosx}+4sin2x=\frac{1}{sinx.cosx}\)

\(\Leftrightarrow cos^2x-sin^2x+4sin2x.sinx.cosx=1\)

\(\Leftrightarrow cos2x+2sin^22x=1\)

\(\Leftrightarrow cos2x+2\left(1-cos^22x\right)=1\)

\(\Leftrightarrow-2cos^22x+cos2x+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\\cos2x=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow...\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 6:38

1c/

\(5sinx-2=3\left(1-sinx\right)\frac{sin^2x}{1-sin^2x}\)

\(\Leftrightarrow5sinx-2=\frac{3sin^2x}{1+sinx}\)

\(\Leftrightarrow\left(5sinx-2\right)\left(1+sinx\right)=3sin^2x\)

\(\Leftrightarrow5sin^2x+3sinx-2=3sin^2x\)

\(\Leftrightarrow2sin^2x+3sinx-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sinx=-2\left(l\right)\end{matrix}\right.\) \(\Rightarrow x=...\)

Bài 2:

a/ \(\Leftrightarrow\frac{\left(m+1\right)\left(1-cos2x\right)}{2}-sin2x+cos2x=0\)

\(\Leftrightarrow2sin2x+\left(m-1\right)cos2x=m+1\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(4+\left(m-1\right)^2\ge\left(m+1\right)^2\)

\(\Leftrightarrow4m\le4\Rightarrow m\le1\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
7 tháng 11 2019 lúc 6:45

Bài 2:

b/ \(\Leftrightarrow1-cos2x+msin2x=2m\)

\(\Leftrightarrow msin2x-cos2x=2m-1\)

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(m^2+1\ge\left(2m-1\right)^2\)

\(\Leftrightarrow3m^2-4m\le0\)

\(\Rightarrow0\le m\le\frac{4}{3}\)

c/ Với \(cosx=0\) không phải là nghiệm

Với \(cosx\ne0\), chia 2 vế cho \(cos^2x\) ta được:

\(tan^2x-4tanx+m-2=0\)

Đặt \(tanx=t\Rightarrow t\in\left[0;1\right]\)

Phương trình trở thành: \(t^2-4t+m-2=0\)

\(\Leftrightarrow f\left(t\right)=t^2-4t-2=-m\)

Dựa vào đồ thị hàm \(f\left(t\right)=t^2-4t-2\), để \(y=-m\) cắt \(y=f\left(t\right)\) với \(t\in\left[0;1\right]\) \(\Rightarrow-5\le-m\le-2\)

\(\Rightarrow2\le m\le5\)

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 8 2017 lúc 5:20

你混過 vulnerable 他 難...
Xem chi tiết
Hồng Phúc
29 tháng 1 2021 lúc 20:58

Đặt \(t=x^2-2x+3\left(t\ge2\right)\)

Phương trình trở thành \(f\left(t\right)=t^2+2\left(3-m\right)t+m^2-6m=0\left(1\right)\)

Phương trình \(\left(1\right)\) có nghiệm \(t_1\ge t_2\ge2\) khi:

\(\left\{{}\begin{matrix}\Delta'\ge0\\\dfrac{t_1+t_2}{2}\ge2\\1.f\left(2\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(3-m\right)^2-m^2+6m\ge0\\m-3\ge2\\m^2-10m+16\ge0\end{matrix}\right.\)

Giải ra tập giá trị của m rồi lấy các giá trị thuộc \(\left[-10;10\right]\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 10 2018 lúc 14:06

Chọn D

Vậy trong khoảng (0,2π), phương trình có các nghiệm là  π 4 ;   3 π 4 ;   5 π 4 ;   7 π 4 nên tổng các nghiệm là 4π