Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
layla Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 7 2021 lúc 9:36

a.

\(\overrightarrow{AI}=\left(2;4;0\right)\Rightarrow R^2=AI^2=20\)

Phương trình (S):

\(\left(x-5\right)^2+\left(y-5\right)^2+z^2=20\)

b.

\(R=d\left(O;\left(\alpha\right)\right)=\dfrac{\left|16.0-15.0-12.0+75\right|}{\sqrt{16^2+15^2+12^2}}=3\)

Phương trình (S): \(x^2+y^2+z^2=9\)

c.

Đường thẳng \(\Delta\) qua \(A\left(-1;1;0\right)\) và nhận \(\overrightarrow{u}=\left(-1;1;-3\right)\) là 1 vtcp

\(\overrightarrow{AI}=\left(0;1;0\right)\)

\(R=d\left(I;\Delta\right)=\dfrac{\left|\left[\overrightarrow{AI};\overrightarrow{u}\right]\right|}{\left|\overrightarrow{u}\right|}=\dfrac{\sqrt{10}}{\sqrt{11}}\)

Phương trình (S): \(\left(x+1\right)^2+\left(y-2\right)^2+z^2=\dfrac{10}{11}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 1 2018 lúc 2:16

x - 5 2 + y + 3 2 + z - 7 2 = 4

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
30 tháng 9 2023 lúc 23:04

a) Phương trình đường tròn (C) có tâm \(I\left( { - 4;2} \right)\) và bán kính \(R = 3\) là: \({\left( {x + 4} \right)^2} + {\left( {y - 2} \right)^2} = 9\).

b) Bán kính đường tròn là: \(R = PE = \sqrt {{{\left( {1 - 3} \right)}^2} + {{\left( {4 + 2} \right)}^2}}  = \sqrt {40} \)

Phương trình đường tròn là: \({\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} = 40\).

c) Bán kính đường tròn là: \(R = \frac{{\left| {3.5 + 4.\left( { - 1} \right) - 1} \right|}}{{\sqrt {{3^2} + {4^2}} }} = \frac{{10}}{5} = 2\)

Phương trình đường tròn là: \({\left( {x - 5} \right)^2} + {\left( {y + 1} \right)^2} = 4\)

d) Giả sử  tâm đường tròn là điểm \(I\left( {a;b} \right)\). Ta có: \(IA = IB = ID \Leftrightarrow I{A^2} = I{B^2} = I{D^2}\)

Vì \(I{A^2} = I{B^2},I{B^2} = I{D^2}\) nên: \(\left\{ \begin{array}{l}{\left( { - 3 - a} \right)^2} + {\left( {2 - b} \right)^2} = {\left( { - 2 - a} \right)^2} + {\left( { - 5 - b} \right)^2}\\{\left( { - 2 - a} \right)^2} + {\left( { - 5 - b} \right)^2} = {\left( {5 - a} \right)^2} + {\left( {2 - b} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b =  - 1\end{array} \right.\) 

=> \(I\left( {1; - 1} \right)\) và \(R = IA = \sqrt {{{\left( 4 \right)}^2} + {{\left( { - 3} \right)}^2}}  = 5\)

Vậy phương trình đường tròn đi qua 3 điểm A,B, D là: \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = 25\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 1 2017 lúc 6:14

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 7 2017 lúc 6:46

Đáp án B

Đường thẳng d đi qua điểm M(6 ;1 ;0) và có vectơ chỉ phương là u d → = (4; -1; -1). Ta có:

Do đường thẳng d tiếp xúc với mặt cầu (S) nên (S) có bán kính là:

Vậy phương trình của mặt cầu (S) là : ( x   -   1 ) 2   +   y 2   +   ( z   +   1 ) 2  = 9

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 8 2018 lúc 9:05

Đáp án D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 10 2017 lúc 13:18

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 3 2018 lúc 8:35

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
30 tháng 9 2023 lúc 0:03

a) Phương trình đường tròn là: \({\left( {x + 3} \right)^2} + {\left( {y - 4} \right)^2} = 81\)

b) Bán kính đường tròn là: \(R = IM = \sqrt {{{\left( {4 - 5} \right)}^2} + {{\left( { - 1 + 2} \right)}^2}}  = \sqrt 2 \)

Phương trình đường tròn là: \({\left( {x - 5} \right)^2} + {\left( {y + 2} \right)^2} = 2\)

c) Bán kính đường tròn là: \(R = \frac{{\left| {5.1 - 12.\left( { - 1} \right) - 1} \right|}}{{\sqrt {{5^2} + {{\left( { - 12} \right)}^2}} }} = \frac{{16}}{{13}}\)

Phương trình đường tròn là: \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = {\left( {\frac{{16}}{{13}}} \right)^2}\)

d) Gọi \(I\left( {a;b} \right)\) là trung điểm AB. Vậy tọa độ điểm I là: \(I\left( {1;1} \right)\)

Bán kính đường tròn là: \(R = IA = \sqrt {{{\left( {3 - 1} \right)}^2} + {{\left( { - 4 - 1} \right)}^2}}  = \sqrt {29} \)

Phương trình đường tròn là: \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 29\)

e) Giả sử  tâm đường tròn là điểm \(I\left( {a;b} \right)\). Ta có: \(IA = IB = IC \Leftrightarrow I{A^2} = I{B^2} = I{C^2}\)

Vì \(I{A^2} = I{B^2},I{B^2} = I{C^2}\) nên: \(\left\{ \begin{array}{l}{\left( {1 - a} \right)^2} + {\left( {1 - b} \right)^2} = {\left( {3 - a} \right)^2} + {\left( {1 - b} \right)^2}\\{\left( {3 - a} \right)^2} + {\left( {1 - b} \right)^2} = {\left( {0 - a} \right)^2} + {\left( {4 - b} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = 3\end{array} \right.\)  b

Vậy \(I\left( {2;3} \right)\) và \(R = IA = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}}  = \sqrt 5 \)

Vậy phương trình đường tròn đi qua 3 điểm A,B, C là: \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = 5\)

Sách Giáo Khoa
Xem chi tiết
CÔNG CHÚA THẤT LẠC
9 tháng 4 2017 lúc 10:05

Giải bài 2 trang 91 sgk Hình học 12 | Để học tốt Toán 12