Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hà Nam Khánh
Xem chi tiết
Su_LoVe
Xem chi tiết
๖Fly༉Donutღღ
23 tháng 3 2018 lúc 21:10

B A C H M

Mấy bài này cũng easy thôi

a) \(\Delta ABC;\widehat{A}=1v\left(gt\right)\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}\)\(=20\left(cm\right)\)

Tam giác ABC đồng dạng với tam giác HBA ( \(\widehat{B}\)chung \(\widehat{BAC}=\widehat{BAH}=90^0\))

\(\Rightarrow\frac{AB}{BH}=\frac{AC}{AH}=\frac{BC}{AB}\)

hay \(\frac{12}{BH}=\frac{16}{AH}=\frac{20}{12}=\frac{10}{6}\)

\(\Rightarrow AH=\frac{16.6}{10}=9,6\left(cm\right)\)

\(\Rightarrow BH=\frac{12.6}{10}=7,2\left(cm\right)\)

\(\Rightarrow HC=BC-BH=20-7,2=12,8\)( cm )

b) \(\Delta HMA\)vuông tại H

\(\Rightarrow S_{HMA}=\frac{1}{2}HM.AH\)\(=\frac{1}{2}.2,8.9,6=13,44\left(cm^2\right)\)

Giang Hoàng Gia Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 10 2023 lúc 13:32

a: Xét tứ giác ADME có

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

=>ADME là hình chữ nhật

=>AM=DE
b: Xét ΔABC có

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

ME//AB

Do đó: E là trung điểm của AC

Xét ΔABC có 

D,E lần lượt là trung điểm của AB,AC

=>DE là đường trung bình

=>DE//BC và DE=1/2BC

=>DE//MC và DE=MC

Xét tứ giác DMCE có

DE//MC

DE=MC

Do đó: DMCE là hình bình hành

c: ΔHAC vuông tại H có HE là trung tuyến

nên \(HE=\dfrac{1}{2}AC\)

mà \(MD=\dfrac{1}{2}AC\)

nên HE=MD

Xét tứ giác DHME có

ED//MH

nên DHME là hình thang

mà HE=MD

nên DHME là hình thang cân

ΔHAB vuông tại H

mà HD là trung tuyến

nên HD=AD

EA=EH

DA=DH

Do đó: ED là đường trung trực của AH

Trần Bá Khang
Xem chi tiết
t. oanh
23 tháng 5 2021 lúc 22:05

A B C H M

Xét tam giác ABH vuông tại H, ta có:

\(AB^2=AH^2+BH^2\)\(=3^2+4^2=25\)

\(\Rightarrow AB=5\left(cm\right)\)

Xét tam giác ABC vuông tại A, theo hệ thức lượng ta có:

\(AH^2=AB\cdot AC\Rightarrow AC=\dfrac{AH^2}{AB}=\dfrac{3^2}{5}=1,8\left(cm\right)\)

Do đó:\(BC=\sqrt{AB^2+AC^2}=\sqrt{5^2+1,8^2}\simeq5,3\left(cm\right)\)

AM là đường trung tuyến trong tam giác vuông ABC

=> AM=\(\dfrac{1}{2}\) BC= 2,65 \(\left(cm\right)\)

Nguyễn Thu Hương
Xem chi tiết
Tran Le Khanh Linh
10 tháng 4 2020 lúc 13:11

Gọi E là giao của AC và PB, F là giao của AB và PC

Qua P kẻ đường thẳng d song song với BC

Giả sử E và F lần luợt là giao của AC và AB với d

Ta có: \(\frac{BM}{PF'}=\frac{CM}{PE'}\left(=\frac{AM}{PA}\right)\), mà \(BM=CM\) => PE'=PF'

Do đó \(\frac{PE}{EB}=\frac{PE'}{BC}=\frac{PF'}{BC}=\frac{PF}{FC}\) => EF//BC => \(\frac{EA}{AC}=\frac{FA}{AB}\)

Gọi I là giao của HQ và AB; K là giao của HR và AC

Áp dụng định lý Talet có: \(\frac{QI}{IH}=\frac{EA}{AC}=\frac{FA}{AB}=\frac{RK}{KH}\), do đó: IK//QR (1)

\(\widehat{MAC}=\widehat{AIK}\) nên PM _|_ IK

Từ (1) => PM _|_ QR hay PA _|_ QR

Gọi S là giao RA và PB

\(\frac{HI}{HK}=\frac{HQ}{HR}=\frac{HB}{HA}\Rightarrow\frac{HB}{HQ}=\frac{HA}{HR};\widehat{BHQ}=\widehat{AHR}\)

có tam giác BHQ đồng dạng với tam giác AHE 

=> \(\widehat{QBH}=\widehat{RAH}\) => Tứ giác BHAS nội tiếp

Vậy \(\widehat{ASB\:}=90^o\) hay RS _|_ PQ (2)

Từ (1) (2) => A là trực tâm tam giác PQR

Khách vãng lai đã xóa
Phương Linh
Xem chi tiết
Akai Haruma
4 tháng 1 2021 lúc 17:06

ĐIểm $M$ là điểm nào thế bạn? 

 

vũ vệt thành
Xem chi tiết
Lê Minh Đức
Xem chi tiết
Đăng Văn Đat
Xem chi tiết
Ngân Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 4 2023 lúc 22:22

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

HB=6^2/10=3,6cm