Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Hoàng Uyên Lâm
Xem chi tiết
Duc Loi
19 tháng 6 2019 lúc 12:08

a) Hình tự vẽ dễ dàng.

Ta có : \(\widehat{E}=\widehat{EGH}=60^o\)mà hai góc này nằm ở vị trí so le trong => GH//Dx ( điều phải chứng minh ).

b) Ta có : \(\widehat{GDF}\&\widehat{D}\)là hai góc nằm ở vị trí kề bù

\(\Rightarrow\widehat{GDF}+\widehat{D}=180^o\Leftrightarrow\widehat{GDF}=180^o-\widehat{D}=180^o-60^o=120^o\)

Vì Dx là tia phân giác góc GDF nên : \(\widehat{GDx}=\widehat{FDx}=\frac{\widehat{GDF}}{2}=\frac{120^o}{2}=60^o\)( 1 )

Áp dụng tính chất tổng ba góc trong 1 tam giác : \(\widehat{E}+\widehat{D}+\widehat{F}=180^o\Leftrightarrow\widehat{F}=180^o-\widehat{E}-\widehat{D}=180^o-60^o-60^o=60^o\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\widehat{FDx}=\widehat{F}=60^o\)mà hai góc này nằm ở vị trí so le trong => Dx//EF ( điều phải chứng minh ).

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
10 tháng 9 2023 lúc 1:17

Vì  ΔABC ∽ ΔDEF \( \Rightarrow \widehat A = \widehat D{,^{}}\widehat B = \widehat E{,^{}}\widehat C = \widehat F\)

Mà \(\widehat A = {60^o} \Rightarrow \widehat D = {60^o}\)

\(\widehat E = {80^o} \Rightarrow \widehat B = {80^o}\)

Có \(\widehat A + \widehat B + \widehat C = {180^o}\)

\( \Rightarrow \widehat C = \widehat F = {180^o} - {60^o} - {80^o} = {40^o}\)

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
18 tháng 9 2023 lúc 19:44

Xét hai tam giác ABC và DEF có:

\(\begin{array}{l}\widehat {ABC} = \widehat {DEF} (= {70^\circ })\\AB = DE\\\widehat {BAC} = \widehat {EDF} (= {60^\circ })\end{array}\)

\( \Rightarrow \Delta ABC{\rm{  = }}\Delta DEF\)(g.c.g)

\( \Rightarrow DF = AC\)( 2 cạnh tương ứng)

Mà AC = 6 cm

\( \Rightarrow DF = 6cm\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
18 tháng 9 2023 lúc 18:14

Do \(\Delta ABC = \Delta DEF\) nên \(\widehat B = \widehat E = {80^o}\); \(\widehat D = \widehat A = {60^o}\); \(\widehat C = \widehat F\) ( các góc tương ứng)

Xét tam giác ABC có:

\(\begin{array}{l}\widehat A + \widehat B + \widehat C = 180^\circ \\ \Rightarrow 60^\circ  + 80^\circ  + \widehat C = 180^\circ \\ \Rightarrow \widehat C = 180^\circ  - 60^\circ  - 80^\circ  = 40^\circ \end{array}\)

Do đó \(\widehat F = 40^\circ \)

Vậy \(\widehat B = {80^o}; \widehat D ={60^o}; \widehat C = \widehat F= 40^\circ \).

Sách Giáo Khoa
Xem chi tiết
Hải Ngân
19 tháng 5 2017 lúc 8:14

A B C D E F

Xét hai tam giác vuông ABC và DEF có:

AC = DF (gt)

\(\widehat{ABC}=\widehat{DEF}\) (gt)

Vậy: \(\Delta ABC=\Delta DEF\left(cgv-gn\right)\).

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
18 tháng 9 2023 lúc 19:44

Xét hai tam giác ABC và DEF có:

\(\begin{array}{l}AB = DE\\AC = DF\\\widehat {BAC} = \widehat {EDF} (= {60^\circ })\end{array}\)

\(\Rightarrow \Delta ABC = \Delta DEF\)(c.g.c)

Do đó:

\(BC=EF = 6cm\) ( 2 cạnh tương ứng)

\( \widehat {ABC} =\widehat {DEF}= {45^o}\) (2 góc tương ứng)

\(\begin{array}{l}\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = {180^o}\\ \Rightarrow {60^o} + {45^o} + \widehat {ACB} = {180^o}\\ \Rightarrow \widehat {ACB} = {75^o}\end{array}\)

\( \Rightarrow \widehat {EFD} = \widehat {ACB} = {75^o}\)

Nguyễn Nhật Minh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Tâm Trần Huy
20 tháng 4 2017 lúc 16:23

Bổ sung thêm AB=DE

Thì ∆ABC=∆DEF (c.g.c)

* Bổ sung thêm ˆCC^=ˆFF^

Thì ∆ABC=∆DEF(g.c.g)

* Bổ sung thêm BC=EF

thì ∆ABC=∆DEF (cạnh huyền- cạnh góc vuông)



Nguyễn Thị Thảo
20 tháng 4 2017 lúc 22:32

Giải:

Xem hình vẽ

* Bổ sung thêm AB=DE

Thì ∆ABC=∆DEF (c.g.c)

* Bổ sung thêm ˆCC^=ˆFF^

Thì ∆ABC=∆DEF(g.c.g)

* Bổ sung thêm BC=EF

thì ∆ABC=∆DEF (cạnh huyền- cạnh góc vuông)

Tiểu thư tinh nghịch
22 tháng 1 2018 lúc 10:28

Các tam giác vuông ABC và DEF có A^=D^=900. AC = DF. Hãy bổ sung thêm một điều kiện bằng nhau (về cạnh hay về góc) đểΔABC=ΔDEF?

Giải:

Xem hình vẽ

* Bổ sung thêm AB=DE

Thì ∆ABC=∆DEF (c.g.c)

* Bổ sung thêm C^=F^

Thì ∆ABC=∆DEF(g.c.g)

* Bổ sung thêm BC=EF

thì ∆ABC=∆DEF (cạnh huyền- cạnh góc vuông)

ΔABC=ΔDEF?

Quỳnh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 6 2023 lúc 19:35

Chọn C