Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
25 tháng 9 2023 lúc 21:48

\(\overrightarrow {MD}  + \overrightarrow {ME}  + \overrightarrow {MF}  = \left( {\overrightarrow {MO}  + \overrightarrow {OD} } \right) + \left( {\overrightarrow {MO}  + \overrightarrow {OE} } \right) + \left( {\overrightarrow {MO}  + \overrightarrow {OF} } \right)\)

Qua M kẻ các đường thẳng \({M_1}{M_2}//AB;{M_3}{M_4}//AC;{M_5}{M_6}//BC\)

Từ đó ta có: \(\widehat {M{M_1}{M_6}} = \widehat {M{M_6}{M_1}} = \widehat {M{M_4}{M_2}} = \widehat {M{M_2}{M_4}} = \widehat {M{M_3}{M_5}} = \widehat {M{M_5}{M_3}} = 60^\circ \)

Suy ra các tam giác \(\Delta M{M_3}{M_5},\Delta M{M_1}{M_6},\Delta M{M_2}{M_4}\) đều

Áp dụng tính chất trung tuyến \(\overrightarrow {AM}  = \frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right)\)(với là trung điểm của BC) ta có:

\(\overrightarrow {ME}  = \frac{1}{2}\left( {\overrightarrow {M{M_1}}  + \overrightarrow {M{M_6}} } \right);\overrightarrow {MD}  = \frac{1}{2}\left( {\overrightarrow {M{M_2}}  + \overrightarrow {M{M_4}} } \right);\overrightarrow {MF}  = \frac{1}{2}\left( {\overrightarrow {M{M_3}}  + \overrightarrow {M{M_5}} } \right)\)

\( \Rightarrow \overrightarrow {MD}  + \overrightarrow {ME}  + \overrightarrow {MF}  = \frac{1}{2}\left( {\overrightarrow {M{M_2}}  + \overrightarrow {M{M_4}} } \right) + \frac{1}{2}\left( {\overrightarrow {M{M_1}}  + \overrightarrow {M{M_6}} } \right) + \frac{1}{2}\left( {\overrightarrow {M{M_3}}  + \overrightarrow {M{M_5}} } \right)\)

Ta có: các tứ giác \(A{M_3}M{M_1};C{M_4}M{M_6};B{M_2}M{M_5}\) là hình bình hành

Áp dụng quy tắc hình bình hành ta có

\(\overrightarrow {MD}  + \overrightarrow {ME}  + \overrightarrow {MF}  = \frac{1}{2}\left( {\overrightarrow {M{M_2}}  + \overrightarrow {M{M_4}} } \right) + \frac{1}{2}\left( {\overrightarrow {M{M_1}}  + \overrightarrow {M{M_6}} } \right) + \frac{1}{2}\left( {\overrightarrow {M{M_3}}  + \overrightarrow {M{M_5}} } \right)\)

\( = \frac{1}{2}\left( {\overrightarrow {M{M_1}}  + \overrightarrow {M{M_3}} } \right) + \frac{1}{2}\left( {\overrightarrow {M{M_2}}  + \overrightarrow {M{M_5}} } \right) + \frac{1}{2}\left( {\overrightarrow {M{M_4}}  + \overrightarrow {M{M_6}} } \right)\)

\( = \frac{1}{2}\overrightarrow {MA}  + \frac{1}{2}\overrightarrow {MB}  + \frac{1}{2}\overrightarrow {MC}  = \frac{1}{2}\left( {\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC} } \right)\)

\( = \frac{1}{2}\left( {\left( {\overrightarrow {MO}  + \overrightarrow {OA} } \right) + \left( {\overrightarrow {MO}  + \overrightarrow {OB} } \right) + \left( {\overrightarrow {MO}  + \overrightarrow {OC} } \right)} \right)\)

\( = \frac{1}{2}\left( {3\overrightarrow {MO}  + \left( {\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC} } \right)} \right) = \frac{3}{2}\overrightarrow {MO} \) (đpcm)

Vậy \(\overrightarrow {MD}  + \overrightarrow {ME}  + \overrightarrow {MF}  = \frac{3}{2}\overrightarrow {MO} \)

Hồ Quốc Khánh
Xem chi tiết
Nagisa lê
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 1:04

Dễ thấy: \(\overrightarrow {BC}  = \overrightarrow {BA}  + \overrightarrow {AC}  =  - \overrightarrow {AB}  + \overrightarrow {AC} \)

Ta có:

 +) \(\overrightarrow {AD}  = \overrightarrow {AB}  + \overrightarrow {BD} \). Mà \(\overrightarrow {BD}  =  - \overrightarrow {DB}  =  - \frac{1}{3}\overrightarrow {BC} \)

\( \Rightarrow \overrightarrow {AD}  = \overrightarrow {AB}  + \left( { - \frac{1}{3}} \right)( - \overrightarrow {AB}  + \overrightarrow {AC} ) = \frac{4}{3}\overrightarrow {AB}  - \frac{1}{3}\overrightarrow {AC} \)

+) \(\overrightarrow {DH}  = \overrightarrow {DA}  + \overrightarrow {AH}  =  - \overrightarrow {AD}  + \overrightarrow {AH} \).

Mà \(\overrightarrow {AD}  = \frac{4}{3}\overrightarrow {AB}  - \frac{1}{3}\overrightarrow {AC} ;\;\;\overrightarrow {AH}  = \frac{2}{3}\overrightarrow {AB} .\)

\( \Rightarrow \overrightarrow {DH}  =  - \left( {\frac{4}{3}\overrightarrow {AB}  - \frac{1}{3}\overrightarrow {AC} } \right) + \frac{2}{3}\overrightarrow {AB}  =  - \frac{2}{3}\overrightarrow {AB}  + \frac{1}{3}\overrightarrow {AC} .\)

+) \(\overrightarrow {HE}  = \overrightarrow {HA}  + \overrightarrow {AE}  =  - \overrightarrow {AH}  + \overrightarrow {AE} \)

Mà \(\overrightarrow {AH}  = \frac{2}{3}\overrightarrow {AB} ;\;\overrightarrow {AE}  = \frac{1}{3}\overrightarrow {AC} \)

\( \Rightarrow \overrightarrow {HE}  =  - \frac{2}{3}\overrightarrow {AB}  + \frac{1}{3}\overrightarrow {AC} .\)

b)

Theo câu a, ta có: \(\overrightarrow {DH}  = \overrightarrow {HE}  =  - \frac{2}{3}\overrightarrow {AB}  + \frac{1}{3}\overrightarrow {AC} \)

\( \Rightarrow \) Hai vecto \(\overrightarrow {DH} ,\overrightarrow {HE} \) cùng phương.

\( \Leftrightarrow \)D, E, H thẳng hàng

Học tốt
Xem chi tiết
Huỳnh Xuân Phương
Xem chi tiết
Nguyễn Linh Chi
2 tháng 8 2020 lúc 13:05

Bạn xem lại đề ạ!

Nếu bạn đã chứng minh được D là trung điểm IQ; E là trung điểm KP; E là trung điểm KP; F là trung điểm LJ

Thì dễ dàng suy ra được: \(\overrightarrow{MD}=\frac{\overrightarrow{MI}+\overrightarrow{MQ}}{2}\)\(\overrightarrow{ME}=\frac{\overrightarrow{MK}+\overrightarrow{MP}}{2}\)\(\overrightarrow{MF}=\frac{\overrightarrow{MJ}+\overrightarrow{ML}}{2}\)

( Vì chúng ta có tính chất: Nếu I là trung điểm đoạn thẳng AB thì mọi điểm M ta có: \(2\overrightarrow{MI}=\overrightarrow{MA}+\overrightarrow{MB}\)

Khách vãng lai đã xóa
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 1:02

a) Ta có: \(\overrightarrow {BC} ,\overrightarrow {PN} \) là hai vecto cùng hướng và \(\frac{1}{2}\left| {\overrightarrow {BC} } \right| = \left| {\overrightarrow {PN} } \right|\)

\( \Rightarrow \frac{1}{2}\overrightarrow {BC}  = \overrightarrow {PN} \)\( \Rightarrow \overrightarrow {AP}  + \frac{1}{2}\overrightarrow {BC}  = \overrightarrow {AP}  + \overrightarrow {PN}  = \overrightarrow {AN} \)

b) Ta có: \(\overrightarrow {MP} ,\overrightarrow {CA} \) là hai vecto cùng hướng và \(2\left| {\overrightarrow {MP} } \right| = \left| {\overrightarrow {CA} } \right|\)

\( \Rightarrow 2\overrightarrow {MP}  = \overrightarrow {CA} \)\( \Rightarrow \overrightarrow {BC}  + 2\overrightarrow {MP}  = \overrightarrow {BC}  + \overrightarrow {CA}  = \overrightarrow {BA} \)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 1:02

Ta có: \(\overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC}  \Leftrightarrow \overrightarrow {BC}  = \overrightarrow b  - \overrightarrow a \)

Lại có: vecto \(\overrightarrow {BD} ,\overrightarrow {BC} \) cùng hướng và \(\left| {\overrightarrow {BD} } \right| = \frac{1}{3}\left| {\overrightarrow {BC} } \right|\)

\( \Rightarrow \overrightarrow {BD}  = \frac{1}{3}\overrightarrow {BC}  = \frac{1}{3}(\overrightarrow b  - \overrightarrow a )\)

Tương tự: vecto \(\overrightarrow {BE} ,\overrightarrow {BC} \) cùng hướng và \(\left| {\overrightarrow {BE} } \right| = \frac{2}{3}\left| {\overrightarrow {BC} } \right|\)

\( \Rightarrow \overrightarrow {BE}  = \frac{2}{3}\overrightarrow {BC}  = \frac{2}{3}(\overrightarrow b  - \overrightarrow a )\)

Ta có:

\(\overrightarrow {AB}  + \overrightarrow {BD}  = \overrightarrow {AD}  \Leftrightarrow \overrightarrow {AD}  = \overrightarrow a  + \frac{1}{3}(\overrightarrow b  - \overrightarrow a ) = \frac{2}{3}\overrightarrow a  + \frac{1}{3}\overrightarrow b \)

\(\overrightarrow {AB}  + \overrightarrow {BE}  = \overrightarrow {AE}  \Leftrightarrow \overrightarrow {AE}  = \overrightarrow a  + \frac{2}{3}(\overrightarrow b  - \overrightarrow a ) = \frac{1}{3}\overrightarrow a  + \frac{2}{3}\overrightarrow b \)

Thiên Yết
Xem chi tiết
Hồng Phúc
27 tháng 10 2020 lúc 18:56

Ta có \(\overrightarrow{AE}=\overrightarrow{AM}+\overrightarrow{ME}\)

\(=\frac{1}{2}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{MN}\)

\(=\frac{1}{2}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{BC}\)

\(=\frac{1}{2}\left(\overrightarrow{AB}+\frac{1}{3}\overrightarrow{BC}\right)\)

\(=\frac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{BF}\right)=\frac{1}{2}\overrightarrow{AF}\)

\(\Rightarrow A;E;F\) thẳng hàng

Khách vãng lai đã xóa
Hồng Phúc
27 tháng 10 2020 lúc 18:56
https://i.imgur.com/a0VbMrD.png
Khách vãng lai đã xóa