Cho a,b,c là các số thực thỏa mãn điều kiện: \(a+b+c=6;\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=8\). Tính giá trị biểu thức: P=\(\frac{c}{a+b}+\frac{a}{b+c}+\frac{b}{c+a}\)
Cho a;b;c là ba số thực dương, a > 1 và thỏa mãn log 2 a b c + log a b 3 c 3 + b c 4 2 + 4 + 4 - c 2 = 0 . Số bộ a;b;c thỏa mãn điều kiện đã cho là:
A. 0
B. 1
C. 2
D. vô số
Ta có:
Dấu “=” xảy ra khi và chỉ khi
Vậy số bộ a,b,c thỏa mãn điều kiện đã cho là 1.
Chọn B.
Cho a, b, c là các số thực dương và thỏa mãn điều kiện abc = 1
Chứng minh rằng \(\dfrac{1}{2+a}\)+\(\dfrac{1}{2+b}\)+\(\dfrac{1}{2+c}\)≤ 1
\(abc=1\) nên tồn tại các số dương x;y;z sao cho \(\left(a;b;c\right)=\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\)
BĐT cần chứng minh tương đương:
\(\dfrac{y}{x+2y}+\dfrac{z}{y+2z}+\dfrac{x}{z+2x}\le1\)
\(\Leftrightarrow\dfrac{2y}{x+2y}-1+\dfrac{2z}{y+2z}-1+\dfrac{2x}{z+2x}-1\le2-3\)
\(\Leftrightarrow\dfrac{x}{x+2y}+\dfrac{y}{y+2z}+\dfrac{z}{z+2x}\ge1\)
Điều này đúng do:
\(VT=\dfrac{x^2}{x^2+2xy}+\dfrac{y^2}{y^2+2yz}+\dfrac{z^2}{z^2+2xz}\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=1\)
cho a,b,c là ba số thực khác 0 thỏa mãn điều kiện a+b-c/c = b+c-a/a = c+a-b/b
Cho a,b,c là các số thực dương thỏa mãn điều kiện a+b+c=1. Tìm GTNN của
P=\(\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+b^2}+\sqrt{c^2+ac+a^2}\)
\(a^2+ab+b^2=\dfrac{1}{2}\left(a^2+b^2\right)+\dfrac{1}{2}\left(a+b\right)^2\ge\dfrac{1}{4}\left(a+b\right)^2+\dfrac{1}{2}\left(a+b\right)^2=\dfrac{3}{4}\left(a+b\right)^2\)
\(\Rightarrow\sqrt{a^2+ab+b^2}\ge\sqrt{\dfrac{3}{4}\left(a+b\right)^2}=\dfrac{\sqrt{3}}{2}\left(a+b\right)\)
Tương tự và cộng lại:
\(P\ge\sqrt{3}\left(a+b+c\right)=\sqrt{3}\)
\(P_{min}=\sqrt{3}\) khi \(a=b=c=\dfrac{1}{3}\)
cho phương trình ax^2+bx+c=0 với các số a,b,c là các số thực nghiệm khác 0 và thỏa mãn điều kiện a+b+2c=0. Chứng minh rằng phương trình trên luôn có nghiệm trên tập số thực
Đặt \(f\left(x\right)=ax^2+bx+c\).
\(f\left(0\right)=c;f\left(1\right)=a+b+c\)
Do \(a+b+2c=0\) nên c và \(a+b+c\) trái dấu. Suy ra f(0)f(1) < 0 nên f(x) = 0 luôn có ít nhất 1 nghiệm tren (0; 1).
Cho các số thực a, b, c thỏa mãn điều kiện : (0 < c < b< a<=3); (2ab <= 2a+3b); (3abc <= ab+3bc+2ca.)
Chứng minh rằng a³ +b³ + c³<= 36.
Cho a, b, c là các số thỏa mãn điều kiện a = b + c. Khi đó
A. a 3 + b 3 a 3 + c 3 = a + b a + c
B. a 3 + b 3 a 3 + c 3 = a + c a + b
C. a 3 + b 3 a 3 + c 3 = b + c a + b
D. a 3 + b 3 a 3 + c 3 = b + c a + c
Ta có a 3 + b 3 = ( a + b ) ( a 2 – a b + b 2 ) mà a = b + c nên
a 3 + b 3 = ( a + b ) ( a 2 – a b + b 2 ) = ( a + b ) [ ( b + c ) 2 – ( b + c ) b + b 2 ] = ( a + b ) ( b 2 + 2 b c + c 2 – b 2 – b c + b 2 ) = ( a + b ) ( b 2 + b c + c 2 )
Tương tự ta có
a 3 + c 3 = ( a + c ) ( a 2 – a c + c 2 ) = ( a + c ) [ ( b + c ) 2 – ( b + c ) c + c 2 ] = ( a + c ) ( b 2 + 2 b c + c 2 – c 2 – b c + c 2 ) = ( a + c ) ( b 2 + b c + c 2 )
Từ đó ta có
a 3 + b 3 a 3 + c 3 = ( a + b ) ( b 2 + b c + c 2 ) ( a + c ) ( b 2 + b c + c 2 ) = a + b a + c
Đáp án cần chọn là: A
Cho a,b,c là các số thực dương thỏa mãn điều kiện abc = 1 .Chứng minh rằng
\(\dfrac{a+1}{a^4}+\dfrac{b+1}{b^4}+\dfrac{c+1}{4}\) ≥ \(\dfrac{3}{4}\)(a + 1)(b + 1)(c + 1)
Em kiểm tra lại mẫu số của biểu thức c, chắc chắn đề sai
Chia 2 vế cho \(\left(a+1\right)\left(b+1\right)\left(c+1\right)\) BĐT trở thành:
\(\dfrac{1}{a^4\left(b+1\right)\left(c+1\right)}+\dfrac{1}{b^4\left(a+1\right)\left(c+1\right)}+\dfrac{1}{c^4\left(a+1\right)\left(b+1\right)}\ge\dfrac{3}{4}\)
Đặt \(\left(a;b;c\right)=\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)\) \(\Rightarrow xyz=1\)
\(\dfrac{1}{a^4\left(b+1\right)\left(c+1\right)}=\dfrac{x^4}{\left(1+\dfrac{1}{y}\right)\left(1+\dfrac{1}{z}\right)}=\dfrac{x^4yz}{\left(y+1\right)\left(z+1\right)}=\dfrac{x^3}{\left(y+1\right)\left(z+1\right)}\)
Do đó BĐT trở thành:
\(\dfrac{x^3}{\left(y+1\right)\left(z+1\right)}+\dfrac{y^3}{\left(x+1\right)\left(z+1\right)}+\dfrac{z^3}{\left(x+1\right)\left(y+1\right)}\ge\dfrac{3}{4}\)
Một bài toán quen thuộc
cho a, b, c là 3 số thực dương, thỏa mãn điều kiện a/b=b/c=c/a hãy tính giá trị của biểu thức B= a2022b2023/c4045
Đặt a/b=b/c=c/a=k
=>a=bk; b=ck; c=ak
=>a=bk; b=ak*k=ak^2; c=ak
=>a=ak^3; b=ak^2; c=ak
=>k=1
=>a=b=c
\(B=\dfrac{a^{2022}\cdot a^{2023}}{a^{4045}}=1\)
cho a , b , c là các số thực dương thỏa mãn điều kiện abc = 1 . CMR : \(\frac{a}{a^3+a+1}+\frac{b}{b^3+b+1}+\frac{c}{c^3+c+1}\le1\)
Mình có cách này,không chắc lắm:
\(VT=\frac{a}{a\left(a^2+bc+1\right)}+\frac{b}{b\left(b^2+ac+1\right)}+\frac{c}{c\left(c^2+ab+1\right)}\) (làm tắt,bạn tự hiểu nha)
\(=\frac{1}{a^2+bc+1}+\frac{1}{b^2+ac+1}+\frac{1}{c^2+ab+1}\)
\(\le\frac{1}{3}\left(\frac{1}{\sqrt[3]{a}}+\frac{1}{\sqrt[3]{b}}+\frac{1}{\sqrt[3]{c}}\right)\)
\(=\frac{1}{3}\left[\left(1+1+1\right)-\left(\frac{\sqrt[3]{a}-1}{\sqrt[3]{a}}+\frac{\sqrt[3]{b}-1}{\sqrt[3]{b}}+\frac{\sqrt[3]{c}-1}{\sqrt[3]{c}}\right)\right]\)
\(=1-\frac{1}{3}\left(\frac{\sqrt[3]{a}-1}{\sqrt[3]{a}}+\frac{\sqrt[3]{b}-1}{\sqrt[3]{b}}+\frac{\sqrt[3]{c}-1}{\sqrt[3]{c}}\right)\)
Áp dụng BĐT Cô si với biểu thức trong ngoặc:
\(=1-\frac{1}{3}\left(\frac{\sqrt[3]{a}-1}{\sqrt[3]{a}}+\frac{\sqrt[3]{b}-1}{\sqrt[3]{b}}+\frac{\sqrt[3]{c}-1}{\sqrt[3]{c}}\right)\)
\(\le1-\sqrt[3]{\left(\sqrt[3]{a}-1\right)\left(\sqrt[3]{b}-1\right)\left(\sqrt[3]{c-1}\right)}\le1^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi a = b = c = 1
Ta c/m bđt sau:
\(a^3+1\ge a^2+a\)
\(\Leftrightarrow a^3+1-a^2-a\ge0\Leftrightarrow a\left(a^2-1\right)-\left(a^2-1\right)\ge0\Leftrightarrow\left(a-1\right)^2\left(a+1\right)\ge0\)
\(\Rightarrow\frac{a}{a^3+a+1}\le\frac{a}{a^2+2a}=\frac{1}{a+2}\)
\(\Rightarrow\frac{a}{a^3+a+1}+\frac{b}{b^3+b+1}+\frac{c}{c^3+c+1}\le\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\)
Đặt \((a,b,c)\rightarrow(\frac{x}{y},\frac{y}{z},\frac{z}{x})\)
\(\Rightarrow\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=\frac{y}{x+2y}+\frac{z}{y+2z}+\frac{x}{z+2x}=\frac{1}{2}\left(1-\frac{x}{x+2y}+1-\frac{y}{y+2z}+1-\frac{z}{z+2x}\right)=\frac{3}{2}-\frac{1}{2}\left(\frac{x^2}{x^2+2xy}+\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2xy}\right)\)\(\le\frac{3}{2}-\frac{1}{2}\left(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}\right)=\frac{3}{2}-\frac{1}{2}.\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)
Dấu bằng xảy ra khi a=b=c=1