\(P+3=\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{c+a}+1\)
\(=\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}\)
\(=6\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=48\)
\(\Rightarrow P=45\)
\(P+3=\frac{c}{a+b}+1+\frac{a}{b+c}+1+\frac{b}{c+a}+1\)
\(=\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}\)
\(=6\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)=48\)
\(\Rightarrow P=45\)
Cho các số thực dương a,b,c thỏa mãn điều kiện abc=1. Tìm giá trị nhỏ nhất của biểu thức P= \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}+\frac{9}{2\left(a+b+c\right)}\)
Cho a,b,c là các số thực thỏa mãn a+b+c=6; \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{47}{60}\)
Tính giá trị của biểu thức \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
1. Với các số thực dương a, b, c thay đổi thỏa mãn điều kiện a2+b2+c2+2abc=1, tìm GTLN của biểu thức P=ab+bc+ca-abc.
2. Cho các số thực dương a, b, c thỏa mãn các điều kiện (a+c)(b+c)=4c2. Tìm GTLN, GTNN của biểu thức P=\(\frac{a}{b+3c}+\frac{b}{a+3c}+\frac{ab}{bc+ca}\)
Cho a,b,c là ba số thực dương thỏa mãn điều kiện a + b + c = 1. Tìm giá trị lớn nhất của biểu thức:
\(P=\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\)
Cho ba số thực dương a,b,c thỏa mãn điều kiện \(\frac{1}{a+2}+\frac{3}{b+4}\le\frac{c+1}{c+3}\) .Tìm giá trị nhỏ nhất của biểu thức \(Q=\left(a+1\right)\left(b+1\right)\left(c+1\right)\)
Bài 1: Cho các số thực dương a,b,c thỏa mãn các điều kiện \(\left(a+c\right)\left(b+c\right)=4c^2\). Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức
\(P=\frac{a}{b+3c}+\frac{b}{a+3c}+\frac{ab}{bc+ca}\)
Bài 2: Cho x,y,z thỏa mãn x+y+z=0 và \(x^2+y^2+z^2=1\). Tìm GTLN của biểu thức \(P=x^5+y^5+z^5\)
Bài 3: Cho a,b,c dương thỏa mãn \(a+b+c=1.\)Tìm Min
\(P=2020\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{1}{3\left(a^2+b^2+c^2\right)}\)
Bài 4: Cho a,b,c là các số thực không âm thỏa mãn điều kiện a+b+c=3. Tìm GTLN của biểu thức \(P=a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\)
1 . Cho các số thực a, b, c dương thỏa mãn
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\)
Tính giá trị lớn nhất của biể thức: \(P=\frac{1}{\sqrt{a^2-ab+3b^2+1}}+\frac{1}{\sqrt{b^2-bc+3c^2+1}}+\frac{1}{\sqrt{c^2-ac+3a^2+1}}\)
2 .
Cho các số thực dương a, b, c thỏa mãn: \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\le1\)
Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}\)
Cho các số dương a, b thỏa mãn điều kiện \(\frac{1}{a}+\frac{1}{b}\text{ ≤ }\frac{1}{2}\). Tìm giá trị nhỏ nhất của biểu thức: M = \(\sqrt{a}+\sqrt{b}-\frac{1}{a+b}\)
Cảm ơn mn nhiều !!!
Cho a, b, c là các số thực thỏa mãn a+b+c=3. Tìm GTNN của biểu thức A=\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)