Đường thẳng (d) cắt parabol(P) tại hai điểm phân biệt khi và chỉ khi, biết: (d):y=m; (P):y =x^2 +b A.m >= b B.m=b C.m>b D.m
Cho parabol (P) y = x2 và đường thẳng (d) y = mx – m + 1 (m là tham số)
a) Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt .
b) Tìm m để (d) cắt (P) tại hai điểm phân biệt A, B sao cho \(\left|x_A-x_B\right|< 3\) .
Biết xA và xB lần lượt là hoành độ giao điểm của hai điểm A, B.
a: Phương trình hoành độ giao điểm là: \(x^2-mx+m-1=0\)
\(\Delta=\left(-m\right)^2-4\cdot\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)
Để (P) cắt (d) tại hai điểm phân biệt thì m-2<>0
hay m<>2
b: \(\left|x_A-x_B\right|< 3\)
\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}< 3\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2< 9\)
\(\Leftrightarrow m^2-4\left(m-1\right)< 9\)
\(\Leftrightarrow\left(m-2\right)^2-3< 0\)
=>(m+1)(m-5)<0
=>-1<m<5
Cho parabol (P) y = x2 và đường thẳng (d) y = mx – m + 1 (m là tham số)
a) Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt .
b) Tìm m để (d) cắt (P) tại hai điểm phân biệt A, B sao cho \(|x_A-x_B|< 3\) .
Biết xA và xB lần lượt là hoành độ giao điểm của hai điểm A, B.
Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y=(m+2)x-m+3 và parabol (P): y=x2
a) Tìm tọa độ giao điểm của (P) và (d) khi m=3
b) Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x21 + x22+ x1x2≤5
a. Em tự giải
b.
Phương trình hoành độ giao điểm (d) và (P):
\(x^2=\left(m+2\right)x-m+3\Leftrightarrow x^2-\left(m+2\right)x+m-3=0\)
\(\Delta=\left(m+2\right)^2-4\left(m-3\right)=m^2+16>0;\forall m\)
(d) cắt (P) tại 2 điểm phân biệt với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=m-3\end{matrix}\right.\)
\(x_1^2+x_2^2+x_1x_2\le5\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2\le5\)
\(\Leftrightarrow\left(m+2\right)^2-\left(m-3\right)\le5\)
\(\Leftrightarrow m^2+3m+2\le0\)
\(\Leftrightarrow\left(m+1\right)\left(m+2\right)\le0\)
\(\Rightarrow-2\le m\le-1\)
a: khi m=3 thì (d): y=5x
PTHĐGĐ là:
x^2=5x
=>x=0 hoặc x=5
=>y=0 hoặc y=25
b:
PTHĐGĐ là:
x^2-(m+2)x+m+3=0
Δ=(m+2)^2-4(m+3)
=m^2+4m+4-4m-12=m^2-8
Để (d) cắt (P) tại 2 điểm pb thì m^2-8>0
=>m>2 căn 2 hoặc m<-2 căn 2
x1^2+x2^2+x1x2<=5
=>(x1+x2)^2-x1x2<=5
=>(m+2)^2-m-3<=5
=>m^2+4m+4-m-3-5<=0
=>m^2+3m-4<=0
=>(m+4)(m-1)<=0
=>-4<=m<=1
cho đường thẳng (d):y=-mx+m+2 và parabol (p):y=x^2 a,Tìm tọa độ giao điểm của (d)và(p) khi m=2 b, Tìm các giá trị của m để đường thẳng (d) cắt parabol (p) tại hai điểm phân biệt có hoành độ x1;x2 sao cho x1^2+x2^2=7
a: PTHĐGĐ là:
x^2+mx-m-2=0(1)
Khi m=2 thì (1) sẽ là
x^2+2x-2-2=0
=>x^2+2x-4=0
=>\(\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=6-2\sqrt{5}\\y=6+2\sqrt{5}\end{matrix}\right.\)
b: Δ=m^2-4(-m-2)
=m^2+4m+8
=(m+2)^2+4>0 với mọi x
=>(d) luôn cắt (P) tại hai điểm phân biệtx
x1^2+x2^2=7
=>(x1+x2)^2-2x1x2=7
=>(-m)^2-2(-m-2)=7
=>m^2+2m+4-7=0
=>m^2+2m-3=0
=>m=-3 hoặc m=1
Cho hàm số y= - x 2 (P) và đường thẳng (d): y = 2mx - 5
b) Chứng tỏ rằng trên mặt phẳng Oxy đường thẳng (d) và parabol (P) luôn cắt nhau tại hai điểm phân biệt. Tìm tọa độ hai giao khi m = 2.
b) Phương trình hoành độ giao điểm của (P) và (d) là:
- x 2 = 2mx - 5 ⇔ x 2 + 2mx - 5 = 0
Δ'= m 2 + 5 > 0 với ∀m ∈ R
Vậy trên mặt phẳng Oxy đường thẳng (d) và Parabol (P) luôn cắt nhau tại hai điểm phân biệt.
Khi m = 2, phương trình hoành độ giao điểm của (P) và (d) là:
- x 2 = 4x - 5 ⇔ x 2 + 4x - 5 = 0
Δ = 4 2 - 4.1.(-5) = 36
⇒ Phương trình có 2 nghiệm
Vậy tọa độ hai giao điểm là M(1;-1) và N(-5;-25)
Cho parabol (P): y = x² và đường thẳng (d): y = 4x - 4m² - 1, với m là tham số
a) Tìm các số thực m để (d) cắt (P) tại hai điểm phân biệt
b) Khi (d) cắt (P) tại hai điểm phân biệt, tìm m để hai giao điểm có hoành độ x1, x2 đều nhận giá trị là số nguyên
a: PTHĐGĐ là:
x^2-4x+4m^2+1=0
Δ=(-4)^2-4(4m^2+1)
=16-16m^2-4=-16m^2+12
Để (d) cắt (P) tại hai điểm phân biệt thì -16m^2+12>0
=>-16m^2>-12
=>m^2<3/4
=>\(-\dfrac{\sqrt{3}}{2}< m< \dfrac{\sqrt{3}}{2}\)
b: x1,x2 nguyên
=>x1+x2 nguyên và x2*x1 nguyên
=>4 nguyên và 4m^2+1 nguyên
=>4m^2 nguyên
=>m^2 nguyên
=>\(m=k^2\left(k\in Z\right)\)
Trong mặt phẳng tọa độ Oxy,cho Parabol (P):y=x^2 và đường thẳng (d): y=2x-m+1 (m là tham số)
a) Tìm tọa độ giao điểm của (d) và (P) khi m=2
b) Tìm M để đường thẳng (d) cắt Parabol (P) tại hai điểm phân biệt có tung độ là y1,y2 thỏa mãn
b: Thay m=2 vào (d), ta được:
y=2x-2+1=2x-1
Phương trình hoành độ giao điểm là:
\(x^2=2x-1\)
=>\(x^2-2x+1=0\)
=>(x-1)^2=0
=>x-1=0
=>x=1
Thay x=1 vào (P), ta được:
\(y=1^2=1\)
Vậy: Khi m=2 thì (P) cắt (d) tại A(1;1)
b: Phương trình hoành độ giao điểm là:
\(x^2=2x-m+1\)
=>\(x^2-2x+m-1=0\)
\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot\left(m-1\right)\)
=4-4m+4
=-4m+8
Để (P) cắt (d) tại hai điểm phân biệt thì Δ>0
=>-4m+8>0
=>-4m>-8
=>m<2
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\\x_1x_2=\dfrac{c}{a}=m-1\end{matrix}\right.\)
y1,y2 thỏa mãn gì vậy bạn?
Trong mặt phẳng tọa độ Oxy, cho parabol (P): y=x2 và đường thẳng (d): y=2(m-1)x+5-2m (m là tham số)
a) Vẽ đồ thị parabol (P).
b) Biết đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt. Gọi hoành độ giao điểm của đường thẳng (d) và parabol (P) là x1, x2. Tìm m để x+x=6
b) Phương trình hoành độ giao điểm của (P) và (d) là:
\(x^2=2\left(m-1\right)x+5-2m\)
\(\Leftrightarrow x^2-2\left(m-1\right)x-5+2m=0\)
Áp dụng hệ thức Vi-et, ta được:
\(x_1+x_2=2\left(m-1\right)\)
Ta có: \(x_1+x_2=6\)
\(\Leftrightarrow2\left(m-1\right)=6\)
\(\Leftrightarrow m-1=3\)
hay m=4
Vậy: m=4
trong mặt phẳng tọa độ Oxy cho parabol (P):y=-1/2x2và đường thẳng (d) y=mx+m-3(với m là tham số)
a, khi m=-1, tìm tọa độ giao điểm của đường thẳng (d)và parabol(P)
b, tìm m để đường thẳng (d)và parabol(P)cắt nhau tại 2 điểm phân biệt có hoành độ x1,x2 thỏa mãn hệ thức x12+x22=14
Phương trình hoành độ giao điểm:
\(-\dfrac{1}{2}x^2=mx+m-3\Leftrightarrow x^2+2mx+2m-6=0\) (1)
a. Khi \(m=-1\), (1) trở thành:
\(x^2-2x-8=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=-8\\x=-2\Rightarrow y=-2\end{matrix}\right.\)
Vậy (d) cắt (P) tại 2 điểm có tọa độ là \(\left(4;-8\right)\) ; \(\left(-2;-2\right)\)
b.
\(\Delta'=m^2-2m+6=\left(m+1\right)^2+5>0;\forall m\Rightarrow\left(1\right)\) có 2 nghiệm pb với mọi m
Hay (d) cắt (P) tại 2 điểm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=2m-6\end{matrix}\right.\)
\(x_1^2+x_2^2=14\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=14\)
\(\Leftrightarrow4m^2-2\left(2m-6\right)=14\)
\(\Leftrightarrow4m^2-4m-2=0\Rightarrow m=\dfrac{1\pm\sqrt{3}}{2}\)