Bài tập cuối chương II

Câu 7 (SGK Cánh Diều - Tập 1 - Trang 82)

Hướng dẫn giải

\(\overrightarrow u .\overrightarrow v = 1.3 - 2.4 + 3.( - 5) = - 20\)

Chọn D

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Câu 6 (SGK Cánh Diều - Tập 1 - Trang 82)

Hướng dẫn giải

\(\left| {\overrightarrow u } \right| = \sqrt {{2^2} + {{( - 2)}^2} + {1^2}} = 3\)

Chọn B

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Câu 11 (SGK Cánh Diều - Tập 1 - Trang 83)

Hướng dẫn giải

\(\overrightarrow w = ( - 2.( - 5) - 3.4;3.3 - 1.( - 5);1.4 - ( - 2).3) = ( - 2;14;10)\) vuông góc với cả hai vecto \(\overrightarrow u \) và \(\overrightarrow v \)

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Câu 8 (SGK Cánh Diều - Tập 1 - Trang 82)

Hướng dẫn giải

\(\overrightarrow {IK} = (5;0;12) \Rightarrow IK = \sqrt {{5^2} + {{12}^2}} = 13\)

Chọn B

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Câu 10 (SGK Cánh Diều - Tập 1 - Trang 82)

Hướng dẫn giải

Trọng tâm của tam giác MNP có tọa độ là: (0;1;2)

Chọn A

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Câu 12 (SGK Cánh Diều - Tập 1 - Trang 83)

Hướng dẫn giải

image.png

Đặt \(A \equiv O(0;0;0)\)

Ta có: \(D'(0;a;a)\); \(M(0;0; - \frac{a}{2})\); \(N(a;a; - \frac{a}{2})\)

\(\overrightarrow {MN} = (a;a;0)\);\(\overrightarrow {AD'} = (0;a;a)\)

\(\cos (\overrightarrow {MN} ,\overrightarrow {AD'} ) = \frac{{\overrightarrow {MN} .\overrightarrow {AD'} }}{{\left| {\overrightarrow {MN} } \right|.\left| {\overrightarrow {AD'} } \right|}} = \frac{{a.a}}{{\sqrt {{a^2} + {a^2}} .\sqrt {{a^2} + {a^2}} }} = \frac{{{a^2}}}{{2{a^2}}} = \frac{1}{2} \Rightarrow (\overrightarrow {MN} ,\overrightarrow {AD'} ) = 60^\circ \)

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Câu 14 (SGK Cánh Diều - Tập 1 - Trang 83)

Hướng dẫn giải

a) \(\overrightarrow {AB} = ( - 2; - 4;8)\); \(\overrightarrow {AC} = ( - 3;2;3)\)

Ta có: \(\overrightarrow {AB} \ne k\overrightarrow {AC} \) => A, B, C không thẳng hàng

b) Để ABCD là hình bình hành thì \(\overrightarrow {AB} = \overrightarrow {DC} \)

Gọi D(a;b;c) => \(\overrightarrow {DC} = ( - 1 - a;2 - b; - c)\)

\(\overrightarrow {AB} = \overrightarrow {DC} \Leftrightarrow ( - 2;-4;8) = ( - 1 - a;2 - b; - c) \Leftrightarrow a = 2;b = 0;c = - 3 \Rightarrow D(1;6; - 8)\)

c) \(G(\frac{1}{3};\frac{{ - 2}}{3};\frac{2}{3})\)

d) \(\overrightarrow {BC} = ( - 1;6; - 5) \Rightarrow BC = \sqrt {62} \)

\(\overrightarrow {AB} = ( - 2; - 4;8) \Rightarrow AB = 2\sqrt {21} \)

\(\overrightarrow {AC} = ( - 3;2;3) \Rightarrow AC = \sqrt {22} \)

Chu vi của tam giác ABC là: AB + AC + BC = \(2\sqrt {21} \)+\(\sqrt {22} \)+\(\sqrt {62} \)

e) \(\cos \widehat {BAC} = \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|}} = \frac{{ - 2.( - 3) - 4.2 + 8.3}}{{\sqrt {{{( - 2)}^2} + {{( - 4)}^2} + {8^2}} .\sqrt {{{( - 3)}^2} + {2^2} + {3^2}} }} = \frac{{\sqrt {462} }}{{42}}\)

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Câu 15 (SGK Cánh Diều - Tập 1 - Trang 83)

Hướng dẫn giải

Ta có:

\(\left| {\overrightarrow {{A_1}O} } \right| = \sqrt {{{(0 - 0)}^2} + {{(1 - 0)}^2} + {{(0 - 0)}^2}} = 1\);

\(\left| {\overrightarrow {{A_2}O} } \right| = \sqrt {{{\left( {\frac{{\sqrt 3 }}{2} - 0} \right)}^2} + {{\left( { - \frac{1}{2} - 0} \right)}^2} + {{(0 - 0)}^2}} = 1\);

\(\left| {\overrightarrow {{A_3}O} } \right| = \sqrt {{{\left( { - \frac{{\sqrt 3 }}{2} - 0} \right)}^2} + {{\left( { - \frac{1}{2} - 0} \right)}^2} + {{(0 - 0)}^2}} = 1\).

Do đó \({A_1}O = {A_2}O = {A_3}O = 1\), suy ra O là trọng tâm tam giác \({A_1}{A_2}{A_3}\).

Khi đó \(\overrightarrow {E{A_1}} + \overrightarrow {E{A_2}} + \overrightarrow {E{A_3}} = 3\overrightarrow {EO} \) (tính chất trọng tâm).

Mặt khác, dễ dàng chứng minh độ dài các giá đỡ \(E{A_1} = E{A_2} = E{A_3}\) (do các tam giác vuông \(EO{A_1}\), \(EO{A_2}\), \(EO{A_3}\) bằng nhau). Các lực \(\overrightarrow {{F_1}} \), \(\overrightarrow {{F_2}} \), \(\overrightarrow {{F_3}} \) cùng phương với các giá đỡ và có độ lớn bằng nhau nên ta có tỉ lệ:

\(\frac{{\left| {\overrightarrow {{F_1}} } \right|}}{{E{A_1}}} = \frac{{\left| {\overrightarrow {{F_2}} } \right|}}{{E{A_2}}} = \frac{{\left| {\overrightarrow {{F_3}} } \right|}}{{E{A_3}}} = k\) và \(\overrightarrow {{F_1}} = k\overrightarrow {E{A_1}} \), \(\overrightarrow {{F_2}} = k\overrightarrow {E{A_2}} \), \(\overrightarrow {{F_3}} = k\overrightarrow {E{A_3}} \).

Từ \(\overrightarrow {E{A_1}} + \overrightarrow {E{A_2}} + \overrightarrow {E{A_3}} = 3\overrightarrow {EO} \) đã chứng minh, ta được:

\(k\overrightarrow {E{A_1}} + k\overrightarrow {E{A_2}} + k\overrightarrow {E{A_3}} = 3k\overrightarrow {EO} \)

\( \Leftrightarrow \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = 3k\overrightarrow {EO} \).

Mà \(\overrightarrow {EO} = (0 - 0;0 - 0;0 - 6) = (0;0 - 6)\).

Suy ra \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = (0;0; - 18k)\).

Giả sử \(\overrightarrow P \) là trọng lực tác động lên cả 3 giá đỡ. \(\overrightarrow P \) là lực vuông góc với mặt phẳng (Oxy), hướng xuống dưới (ngược chiều với trục Oz) nên tọa độ của \(\overrightarrow P = (0;0; - 300)\).

Suy ra \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow P \Leftrightarrow - 18k = - 300 \Leftrightarrow k = \frac{{50}}{3}\).

Vậy \(\overrightarrow {{F_1}} = (0;\frac{{50}}{3}; - 100)\); \(\overrightarrow {{F_2}} = (\frac{{25\sqrt 3 }}{3}; - \frac{{25}}{3}; - 100)\); \(\overrightarrow {{F_3}} = ( - \frac{{25\sqrt 3 }}{3}; - \frac{{25}}{3}; - 100)\).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Câu 13 (SGK Cánh Diều - Tập 1 - Trang 83)

Hướng dẫn giải

a) C(1;1;0); B’(1;0;1); C’(1;1;1); D’(0;1;1)

b) \(G(\frac{1}{3};\frac{1}{3};\frac{1}{3})\)

c) \(\overrightarrow {OG} = (\frac{1}{3};\frac{1}{3};\frac{1}{3})\)

\(\overrightarrow {OC'} = (1;1;1)\)

Ta có: \(\overrightarrow {OG} = \frac{1}{3}\overrightarrow {OC'} \) => O, G, C’ thẳng hàng

\(\left| {\overrightarrow {OG} } \right| = \frac{1}{3}\left| {\overrightarrow {OC'} } \right|\;\;hay\;\;OG = \frac{1}{3}OC\)

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Câu 9 (SGK Cánh Diều - Tập 1 - Trang 82)

Hướng dẫn giải

Trung điểm của đoạn thẳng MN có tọa độ là: (2;1;-1)

Chọn D

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)