Bài tập cuối chương I

Câu 6 (SGK Cánh Diều - Tập 1 - Trang 46)

Hướng dẫn giải

A. \(y = \frac{{5x + 1}}{{3x - 2}}\)

Tập xác định: \(\mathbb{R}\backslash \left\{ {\frac{2}{3}} \right\}\)

Đặt mẫu: \(3x - 2 = 0\) → \(x = \frac{2}{3}\)

Vậy hàm số có TCĐ là: \(x = \frac{2}{3}\)

Ta có:

\(\mathop {{\rm{lim}}}\limits_{x \to  \pm \infty } \frac{{5x + 1}}{{3x - 2}} = \frac{5}{3}\)

Vậy, hàm số có TCN là: \(y = \frac{5}{3}\)

B. \(y = \frac{{2{x^3} - 3x}}{{{x^3} + 1}}\)

TXĐ: \(\mathbb{R}\backslash \left\{ { - 1} \right\}\)

Đặt mẫu \({x^3} + 1 = 0\) → \(x =  - 1\)

Vậy hàm số có TCĐ là: \(x =  - 1\)

Ta có:

\(\mathop {{\rm{lim}}}\limits_{x \to  \pm \infty } \frac{{2{x^3} - 3x}}{{{x^3} + 1}} = 2\)

Vậy hàm số có TCN là: \(y = 2\)

C. \(y = \frac{x}{{\sqrt {{x^2} - 4} }}\)

TXĐ: \(x \in \left[ { - \infty , - 2} \right] \cup \left[ {2, + \infty } \right]\)

Đặt mẫu \(\sqrt {{x^2} - 4}  = 0\) → \(x =  - 2;\;x = 2\)

Vậy hàm số có TCĐ là: \(x =  - 2;\;x = 2\)

Ta có

\(\mathop {{\rm{lim}}}\limits_{x \to  + \infty } \frac{x}{{\sqrt {{x^2} - 4} }} = 1\)

\(\mathop {{\rm{lim}}}\limits_{x \to  - \infty } \frac{x}{{\sqrt {{x^2} - 4} }} =  - 1\)

Vậy hàm số có TCN là: \(y = 1;\;y =  - 1\)

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Câu 5 (SGK Cánh Diều - Tập 1 - Trang 46)

Hướng dẫn giải

Xét đồ thị a ta thấy đồ thị đi qua điểm (0;0)

Thay x=0 vào hàm số

=> Thấy C thỏa mãn

=> Chọn C


Xét đồ thị b ta thấy đồ thị đi qua điểm (0;3)

Thay x=0 vào hàm số

=> Thấy A thỏa mãn 

=> Chọn A

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Câu 10 (SGK Cánh Diều - Tập 1 - Trang 47)

Hướng dẫn giải

Giả sử chiều dài của trang sách là x và chiều rộng là y. Theo đề bài, diện tích của trang sách là:

$xy~=~384~cm{}^\text{2}$                

Khi để lề trên và lề dưới đều là 3 cm, lề trái và lề phải đều là 2 cm thì diện tích phần in chữ sẽ là:

\(\left( {x - 2.3} \right)\left( {y - 2.2} \right)\; = \;\left( {x - 6} \right)\left( {y - 4} \right)\)

Ta có: \(x = \frac{{384}}{y}\) (1)

Thay x vào phương trình \(\left( {x - 6} \right)\left( {y - 4} \right)\) ta thu được \(\left( {x - 6} \right)\left( {\frac{{384}}{x} - 4} \right)\)

\(f\left( x \right) = \;\left( {x - 6} \right)\left( {\frac{{384}}{x} - 4} \right)\)

$\to f\left( x \right)=-4+\left( \frac{2304}{{{x}^{2}}} \right)$

$f\left( x \right)=0\to -4+\left( \frac{2304}{{{x}^{2}}} \right)=0\to x=24$

Thế vào (1): \(x = 24 \to y = 16\)

Vậy kích thước của trang sách có chiều dài 24 cm, chiều rộng 16 cm thì phần in chữ trên trang sách có diện tích lớn nhất

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Câu 7 (SGK Cánh Diều - Tập 1 - Trang 46)

Hướng dẫn giải

a) \(y = x - 3 + \frac{1}{{{x^2}}}\)

TCĐ: \({x^2} = 0 \to x = 0\)

Vậy đường tiệm cận đứng của hàm số là \(x = 0\)

TCX:

\(\mathop {{\rm{lim}}}\limits_{x \to  + \infty } \frac{y}{x} = \mathop {{\rm{lim}}}\limits_{x \to  + \infty } \frac{{\left( {x - 3 + \frac{1}{{{x^2}}}} \right)}}{x} = 1\)

\(\mathop {{\rm{lim}}}\limits_{x \to  + \infty } \left( {y - ax} \right) = \mathop {{\rm{lim}}}\limits_{x \to  + \infty } x - 3 + \frac{1}{{{x^2}}} - x =  - 3\)

Vậy đường tiệm cận xiên của hàm số là \(y = x - 3\)

b) \(y = \frac{{2{x^2} - 3x + 2}}{{x - 1}}\)

TCĐ: \(x - 1 = 0 \to x = 1\)

Vậy đường tiệm cận đứng của hàm số là \(x = 1\)

TCX:

\(\mathop {{\rm{lim}}}\limits_{x \to  + \infty } \frac{y}{x} = \mathop {{\rm{lim}}}\limits_{x \to  + \infty } \frac{{\frac{{2{x^2} - 3x + 2}}{{x - 1}}}}{x} = 2\)

\(\mathop {{\rm{lim}}}\limits_{x \to  + \infty } \left( {y - ax} \right) = \mathop {{\rm{lim}}}\limits_{x \to  + \infty } \frac{{2{x^2} - 3x + 2}}{{x - 1}} - 2x =  - 1\)

Vậy đường tiệm cận xiên của hàm số là \(y = 2x - 1\)

c) \(y = \frac{{2{x^2} - x + 3}}{{2x + 1}}\)

TCĐ: \(2x + 1 = 0 \to x =  - \frac{1}{2}\)

Vậy đường tiệm cận đứng của hàm số là \(x =  - \frac{1}{2}\)

TCX:

\(\mathop {{\rm{lim}}}\limits_{x \to  + \infty } \frac{y}{x} = \mathop {{\rm{lim}}}\limits_{x \to  + \infty } \frac{{\frac{{2{x^2} - x + 3}}{{2x + 1}}}}{x} = 1\)

\(\mathop {{\rm{lim}}}\limits_{x \to  + \infty } \left( {y - ax} \right) = \mathop {{\rm{lim}}}\limits_{x \to  + \infty } \frac{{2{x^2} - x + 3}}{{2x + 1}} - x =  - 1\)

Vậy đường tiệm cận xiên của hàm số là \(y = x - 1\)

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Câu 9 (SGK Cánh Diều - Tập 1 - Trang 47)

Hướng dẫn giải

\(a,\;y = {x^3} - 3{x^2} + 2\)

TXD : R

\(y' = 3{x^2} - 6x\)

Cho y= 0 => \(\left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = 2}\end{array}} \right.\)

Bảng biến thiên:

Đồ thị hàm số:

Hàm số đồng biến trong khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {2; + \infty } \right)\)

Hàm số nghịch biến trong khoảng (0;2)

\(\;b,\;y =  - {x^3} + 3{x^2} - 6x\)

TXD: R

\(y' = \; - 3{x^2} + 6x - 6\)

Bảng biến thiên:

Đồ thị hàm số

Hàm số nghịch biến trên R

\(c,y = \frac{{3x - 2}}{{x - 2}}\)

TXD: R/2

\(\mathop {\lim }\limits_{x \to  + \infty } \frac{{3x - 2}}{{x - 2}} = 3 =  > TCN\;y = 3\)

\(\mathop {\lim }\limits_{x \to {2^ - }} \frac{{3x - 2}}{{x - 2}} =  - \infty \)

Bảng biến thiên:

Đồ thị hàm số:

Hàm số nghịch biến trên khoảng R

\(d,y = \frac{x}{{2x + 3}}\)

TXD: R \ {\( - \frac{3}{2}\)}

TCN \(y = \frac{1}{2}\)

TCD \(x =  - \frac{3}{2}\)

Bảng biến thiên

Đồ thị hàm số:

\(e,y = \frac{{{x^2} + 2x + 4}}{x}\)

\(TXD:\mathbb{R}\backslash \{ 0\} \)

TCD: x = 0.

Không có tiệm cận ngang.

Có thể viết hàm số đã cho dưới dạng: \(y = \frac{{{x^2} + 4x + 3}}{{x + 2}} = x + 2 + \frac{4}{x}\), suy ra:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to  + \infty } \left[ {y - (x + 2)} \right] = \mathop {\lim }\limits_{x \to  + \infty } \frac{4}{x} = 0.\\\mathop {\lim }\limits_{x \to  - \infty } \left[ {y - (x + 2)} \right] = \mathop {\lim }\limits_{x \to  - \infty } \frac{4}{x} = 0.\end{array}\)

Do đó, đồ thị hàm số có \(y = x + 2\) là tiệm cận xiên.

\(y' = \frac{{\left( {2x + 2} \right)x - \left( {{x^2} + 2x + 4} \right)}}{{{x^2}}} = \frac{{{x^2} - 4}}{{{x^2}}}\).

Cho y’=0 => x=\( \pm 2\).

Bảng biến thiên:

Đồ thị hàm số:

g, \(y = \frac{{{x^2} + 4x + 3}}{{x + 2}}\)

TXD: \(\mathbb{R}\backslash \{  - 2\} \).       \[\]

\(\mathop {\lim }\limits_{x \to  + \infty } y =  + \infty ,\mathop {\lim }\limits_{x \to  - \infty } y =  - \infty \). Đồ thị àm số không có tiệm cận ngang.

\(\mathop {\lim }\limits_{x \to  - {2^ + }} y =  - \infty ,\mathop {\lim }\limits_{x \to  - {2^ - }} y =  + \infty \). Đồ thị hàm số có \(x =  - 2\) là tiệm cận đứng.

Có thể viết hàm số đã cho dưới dạng: \(y = \frac{{{x^2} + 4x + 3}}{{x + 2}} = x + 2 - \frac{1}{{x + 2}}\), suy ra:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to  + \infty } \left[ {y - (x + 2)} \right] = \mathop {\lim }\limits_{x \to  + \infty } \frac{{ - 1}}{{x + 2}} = 0.\\\mathop {\lim }\limits_{x \to  - \infty } \left[ {y - (x + 2)} \right] = \mathop {\lim }\limits_{x \to  - \infty } \frac{{ - 1}}{{x + 2}} = 0.\end{array}\)

Do đó, đồ thị hàm số có \(y = x + 2\) là tiệm cận xiên.

Bảng biến thiên:

Đồ thị hàm số:

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Câu 11 (SGK Cánh Diều - Tập 1 - Trang 47)

Hướng dẫn giải

Gọi độ dài của hàng rào song sông với bờ sông là x(m) với x>0

Gọi độ dài của mỗi hàng rào trong ba hàng rào song song nhau là y(m) với y>0

Diện tích đất mà bác nông dân rào được là: \(xy\left( {{m^2}} \right)\)

Tổng chi phí là 15.000.000 đồng nên ta có phương trình:

\(x*60000 + 3y*50000 = 15000000 =  > 6x + 15y = 1500\)

Áp dụng bất đẳng thức Cauchy cho hai số dương ta có:

\(6x + 15y \ge 2\sqrt {6x.5y}  =  > 1500 \ge 2\sqrt {90xy}  =  > xy \le 6250\)

Vậy diện tích lớn nhất mà bác nông dân có thể tạo rào là 6250\(\left( {{m^2}} \right)\)

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Câu 13 (SGK Cánh Diều - Tập 1 - Trang 48)

Hướng dẫn giải

Đặt A'M = x (m).

Suy ra B'M = A'B' – A'M = 2 200 – x (m).

Rõ ràng, x phải thỏa mãn điều kiện 0 < x < 2 200.

Áp dụng định lí Pythagore ta tính được:

\(AM = \sqrt {A'{A^2} + A'{M^2}}  = \sqrt {{{500}^2} + {x^2}} \) (m)

\(BM = \sqrt {B'{B^2} + B'{M^2}}  = \sqrt {{{600}^2} + (2200 - {x^2})} \) (m)

Tổng khoảng cách từ hai vị trí A, B đến vị trí M là

\(D = AM + BM = \sqrt {{{500}^2} + {x^2}}  + \sqrt {{{600}^2} + (2200 - {x^2})} \) (m)

Xét hàm số \(D(x) = \sqrt {{{500}^2} + {x^2}}  + \sqrt {{{600}^2} + (2200 - {x^2})} \) với \(x \in (0;2200)\).

Ta có: \(D'(x) = \frac{x}{{\sqrt {{{500}^2} + {x^2}} }} + \frac{{x - 2200}}{{\sqrt {{{600}^2} + {{(2200 - x)}^2}} }}\).

Trên khoảng (0;2200), ta thấy D'(x) = 0 khi x = 1 000.

Bảng biến thiên của hàm số D(x) như sau:

 

Căn cứ vào bảng biến thiên, ta thấy hàm số D(x) đạt giá trị nhỏ nhất bằng \(1100\sqrt 5 \) tại x = 1 000.

Vậy giá trị nhỏ nhất của tổng khoảng cách cần tìm là  \(1100\sqrt 5 \) m.

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Câu 14 (SGK Cánh Diều - Tập 1 - Trang 48)

Hướng dẫn giải

Cứ tăng thêm 200 nghìn đồng vào giá thuê một căn hộ trên một tháng thì có một căn hộ bị bỏ trống.

Gọi số lần tăng 200 nghìn đồng vào giá thuê một căn hộ trên một tháng là x (\(x \in {\mathbb{N}^*}\)).

Khi đó x cũng là số căn hộ bị bỏ trống.

Tổng số tiền công ty thu được lúc này là:

\(T(x) = (2000 + 200x)(20 - x) = 40000 + 2000x - 200{x^2}\) với \(x \in {\mathbb{N}^*}\).

Ta có: \(T'(x) = 2000 - 400x = 0 \Leftrightarrow x = 5\) (TM).

Căn cứ vào bảng biến thiên trên, ta thấy hàm số T(x) đạt giá trị lớn nhất bằng 45000 khi x = 5.

Khi đó, số tiền tăng lên khi cho thuê một căn hộ là 200.5 = 1000 nghìn đồng = 1 triệu đồng.

Vậy công ty nên cho thuê mỗi căn hộ 3 triệu đồng/1 tháng thì tổng số tiền thu được là lớn nhất.

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Câu 12 (SGK Cánh Diều - Tập 1 - Trang 48)

Hướng dẫn giải

Giả sử chiều dài của hai cạnh đáy của hình thang cân lần lượt là \(x\) và \(2x\), và chiều dài của cạnh bên là \(a - 3x\). Do đó, chiều cao của hình thang cân là: \(h = \sqrt {{{(a - 3x)}^2} - {x^2}} \)

Diện tích của hình thang cân là:

\(S = \frac{{\left( {x + 2x} \right)h}}{2} = \frac{{3x\sqrt {{{(a - 3x)}^2} - {x^2}} }}{2}\)

Để tìm giá trị lớn nhất của S, ta cần tìm giá trị x sao cho đạo hàm của S theo x bằng 0. Đạo hàm của S theo x được tính bằng công thức sau:

\(S' = \frac{{dS}}{{dx}} = \frac{{3x\left( {8x - 9} \right)}}{{2\sqrt { - {x^2} + {{(a - 3x)}^2}} }} + \frac{{3\sqrt { - {x^2} + {{(a - 3x)}^2}} }}{2}\).

Giải phương trình \(S' = 0\)

Sau khi giải, thay x vào công thức diện tích S, ta tìm được diện tích lớn nhất của mảnh vườn có thể rào được là \({S_{max}} = \frac{{{a^2}\sqrt 3 }}{4}\)

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Câu 8 (SGK Cánh Diều - Tập 1 - Trang 47)

Hướng dẫn giải

a) \(f\left( x \right) = 2{x^3} - 6x\) trên đoạn \(\left[ { - 1;3} \right]\)

Tìm điểm cực trị: \(f'\left( x \right) = 0 \to 6{x^2} - 6 = 0 \to x = - 1, x = 1\)

So sánh giá trị hàm số tại các điểm cực trị và hai đầu mút của đoạn:

\(f\left( { - 1} \right) = 2{( - 1)^3} - 6\left( { - 1} \right) =  - 2 + 6 = 4\)

\(f\left( 1 \right) = 2{(1)^3} - 6\left( 1 \right) = 2 - 6 =  - 4\)

\(f\left( 3 \right) = 2{(3)^3} - 6\left( 3 \right) = 54 - 18 = 36\)

Vậy GTNN của hàm số trên đoạn \(\left[ { - 1;3} \right]\) là \( - 4\) (tại \(x = 1\)), và GTLN là 36 (tại \(x = 3\))

b) \(f\left( x \right) = \frac{{{x^2} + 3x + 6}}{{x + 2}}\) trên đoạn \(\left[ {1;5} \right]\)

\(f'(x) = \frac{{{x^2} + 4x}}{{{{(x + 2)}^2}}} = 0 \Leftrightarrow x = 0\). Khi đó trên đoạn [1;5] không tồn tại x để f’(x) = 0.

So sánh giá trị hàm số tại hai đầu mút của đoạn:

\(f\left( 1 \right) = \frac{{{1^2} + 3.1 + 6}}{{1 + 2}} = \frac{{10}}{3};f\left( 5 \right) = \frac{{{5^2} + 3.5 + 6}}{{5 + 2}} = \frac{{46}}{7}\)

Vậy GTNN của hàm số trên đoạn \(\left[ {1;5} \right]\) là \(\frac{{10}}{3}\) (tại \(x = 1\)), và GTLN là \(\frac{{46}}{7}\) (tại \(x = 5\))

c) \(f\left( x \right) = \frac{{In\left( {x + 1} \right)}}{{x + 1}}\) trên đoạn \(\left[ {0;3} \right]\)

So sánh giá trị hàm số:

\(f\left( 0 \right) = \frac{{\ln \left( {0 + 1} \right)}}{{0 + 1}} = 0; f(e - 1) = \frac{1}{{e + 1}}; f\left( 3 \right) = \frac{{\ln \left( {3 + 1} \right)}}{{3 + 1}} = \frac{{\ln \left( 2 \right)}}{2}\)

Vậy GTNN của hàm số trên đoạn \(\left[ {0;3} \right]\) là 0 (tại \(x = 0\)), và GTLN là \(\frac{{\ln \left( 2 \right)}}{2}\) (tại \(x = 3\))

d) \(f\left( x \right) = 2sin3x + 7x + 1\) trên đoạn \(\left[ {\frac{{ - \pi }}{2};\frac{\pi }{2}} \right]\)

\(f'(x) = 6\cos 3x + 7\). Khi đó trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\) ta có f’(x) > 0, hàm số đồng biến

So sánh giá trị hàm số tại hai đầu mút của đoạn:

\(f\left( { - \frac{\pi }{2}} \right) = 2\sin \left( {3\left( { - \frac{\pi }{2}} \right)} \right) + 7\left( { - \frac{\pi }{2}} \right) + 1 = 3 - \frac{{7\pi }}{2}\)

\(f\left( {\frac{\pi }{2}} \right) = 2\sin \left( {3\left( {\frac{\pi }{2}} \right)} \right) + 7\left( {\frac{\pi }{2}} \right) + 1 =  - 1 + \frac{{7\pi }}{2}\)

Vậy GTNN của hàm số trên đoạn \(\left[ {\frac{{ - \pi }}{2};\frac{\pi }{2}} \right]\) là \(3 - \frac{{7\pi }}{2}\) (tại \(x = \frac{{ - \pi }}{2}\)), và GTLN là \( - 1 + \frac{{7\pi }}{2}\) (tại \(x = \frac{\pi }{2}\))

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)