Bài 4. Phép nhân đa thức một biến

Bài 2 (SGK Cánh Diều trang 63)

Hướng dẫn giải

a) \(\begin{array}{l}P(x) = ( - 2{x^2} - 3x + x - 1)(3{x^2} - x - 2) \\=  - 2{x^2}(3{x^2} - x - 2) - 3x(3{x^2} - x - 2) + x(3{x^2} - x - 2) - 1.(3{x^2} - x - 2)\\ =  - 6{x^4} + 2{x^3} + 4{x^2} - 9{x^3} + 3{x^2} + 6x + 3{x^3} - {x^2} - 2x - 3{x^2} + x + 2\\ =  - 6{x^4} - 4{x^3} + 3{x^2} + 5x + 2\end{array}\)

Bậc của đa thức là: 4.

Hệ số cao nhất của đa thức là: – 6.

Hệ số tự do của đa thức là: 2.

b)

\(\begin{array}{l}Q(x) = ({x^5} - 5)( - 2{x^6} - {x^3} + 3) \\= {x^5}( - 2{x^6} - {x^3} + 3) - 5( - 2{x^6} - {x^3} + 3) \\ =  - 2{x^{11}} - {x^8} + 3{x^5} + 10{x^6} + 6{x^3} - 15\\ =  - 2{x^{11}} - {x^8} + 10{x^6} + 3{x^5} + 6{x^3} - 15\end{array}\)

Bậc của đa thức là: 11.

Hệ số cao nhất của đa thức là: – 2.

Hệ số tự do của đa thức là: – 15. 

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 3 (SGK Cánh Diều trang 63)

Hướng dẫn giải

a) \(\begin{array}{l}P(x) = {x^2}({x^2} + x + 1) - 3x(x - a) + \dfrac{1}{4} = {x^4} + {x^3} + {x^2} - 3{x^2} + 3ax + \dfrac{1}{4}\\ = {x^4} + {x^3} - 2{x^2} + 3ax + \dfrac{1}{4}\end{array}\).

b) Các hệ số có trong đa thức P(x) là: 1; 1; – 2; 3a; \(\dfrac{1}{4}\).

Tổng các hệ số bằng \(\dfrac{5}{2}\)hay:

\(\begin{array}{l}1 + 1 - 2 + 3a + \dfrac{1}{4} = \dfrac{5}{2}\\ \to 3a = \dfrac{9}{4}\\ \to a = \dfrac{3}{4}\end{array}\)

Vậy \(a = \dfrac{3}{4}\).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 4 (SGK Cánh Diều trang 63)

Hướng dẫn giải

Gọi độ dài cạnh hình vuông bị cắt đi là x (cm). Vậy chiều cao của hình hộp chữ nhật là x (cm),

Chiều dài tấm bìa sau khi cắt hay chiều dài hình hộp chữ nhật là: \(30 - 2x\) (cm).

Chiều rộng tấm bìa sau khi cắt hay chiều rộng hình hộp chữ nhật là: \(20 - 2x\)(cm).

Thể tích hình hộp chữ nhật là:

\(\begin{array}{l}(30 - 2x).(20 - 2x).x \\= (30 - 2x)(20x - 2{x^2})\\ = 30(20x - 2{x^2}) - 2x(20x - 2{x^2})\\ = 600x - 60{x^2} - 40{x^2} + 4{x^3}\\ = 4{x^3} - 100{x^2} + 600x (cm^3)\end{array}\)

Vậy đa thức biểu diễn thể tích của hình hộp chữ nhật được tạo thành theo độ dài cạnh của hình vuông bị cắt đi là \(4{x^3} - 100{x^2} + 600x\).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 5 (SGK Cánh Diều trang 63)

Hướng dẫn giải

Gọi số tuổi của một người là (tuổi)

– Nếu bạn lấy tuổi của một người bất kì cộng thêm 5: \(x + 5\)

  – Được bao nhiêu đem nhân với 2: \((x + 5).2 = 2x + 10\)

  – Lấy kết quả đó cộng với 10: \(2x + 10 + 10 = 2x + 20\)

  – Nhân kết quả vừa tìm được với 5: \((2x + 20).5 = 10x + 100\)

  – Đọc kết quả cuối cùng sau khi trừ đi 100: \(10x + 100 - 100 = 10x\).

Vậy kết quả cuối cùng mà bạn Ngọc đọc sẽ là \(10x\) tức là 10 lần số tuổi của người đó. Vậy nên khi có kết quả mà bạn Ngọc đọc lên, bạn Hạnh chỉ cần lấy số đó chia cho 10 là ra tuổi của người mà bạn Hạnh chọn. 

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)