Bài 4. Phép nhân đa thức một biến

Khởi động (SGK Cánh Diều trang 60)

Hướng dẫn giải

Muốn nhân một đa thức với một đa thức, ta nhân mỗi đơn thức của đa thức này với từng đơn thức của đa thức kia rồi cộng các tích với nhau.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 1 (SGK Cánh Diều trang 60)

Hướng dẫn giải

a) \({x^2}.{x^4} = {x^{2 + 4}} = {x^6}\).

b) \(3{x^2}.{x^3} = 3.1.{x^{2 + 3}} = 3{x^5}\).

c) \(a{x^m}.b{x^n} = a.b.{x^{m + n}}\) (a ≠ 0; b ≠ 0; m, n \(\in\) N).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập 1 (SGK Cánh Diều trang 60)

Hướng dẫn giải

a) \(3{x^5}.5{x^8} = 3.5.{x^5}.{x^8} = 15.{x^{5 + 8}} = 15.{x^{13}}\).

b) \( - 2{x^{m + 2}}.4{x^{n - 2}} =  - 2.4.{x^{m + 2}}.{x^{n - 2}} =  - 8.{x^{m + 2 + n - 2}} =  - 8.{x^{m + n}}\) (m, n \(\in\) N; n > 2).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 2 (SGK Cánh Diều trang 60,61)

Hướng dẫn giải

a)

Diện tích của hình chữ nhật (I) là: \(a.b\).

Diện tích của hình chữ nhật (II) là: \(a.c\).

b) Diện tích của hình chữ nhật MNPQ là: \(ab + ac\).

c) Ta có: \(a(b + c) = a.b + a.c\).

Vậy \(a(b + c)\) = \(ab + ac\).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 3 (SGK Cánh Diều trang 60,61)

Hướng dẫn giải

a)

Các đơn thức của đa thức Q(x) là: \(3{x^2};4x;1\).

Tích của đơn thức P(x) với từng đơn thức của đa thức Q(x) lần lượt là: \(2x.3{x^2} = 6{x^3};2x.4x = 8{x^2};2x.1 = 2x\).

b) Cộng các tích vừa tìm được:

\(6{x^3} + 8{x^2} + 2x\).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập 2 (SGK Cánh Diều trang 60,61)

Hướng dẫn giải

a) \(\dfrac{1}{2}x(6x - 4) = \dfrac{1}{2}x.6x + \dfrac{1}{2}x.( - 4) = 3{x^2} - 2x\).

b) \(\begin{array}{l} - {x^2}(\dfrac{1}{3}{x^2} - x - \dfrac{1}{4}) =  - {x^2}.\dfrac{1}{3}{x^2} +  - {x^2}. - x +  - {x^2}. - \dfrac{1}{4}\\ =  - \dfrac{1}{3}{x^4} + {x^3} + \dfrac{1}{4}{x^2}\end{array}\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 4 (SGK Cánh Diều trang 61,62)

Hướng dẫn giải

a)

Diện tích của hình chữ nhật (I) là: \(a.c\).

Diện tích của hình chữ nhật (II) là: \(a.d\).

Diện tích của hình chữ nhật (III) là: \(b.c\).

Diện tích của hình chữ nhật (IV) là: \(b.d\).

b) Diện tích hình chữ nhật MNPQ là: \(ac + ad + bc + bd\).

c) Ta có:

\((a + b)(c + d) = a(c + d) + b(c + d) = ac + ad + bc + bd\).

Vậy \((a + b)(c + d)\) = \(ac + ad + bc + bd\).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 5 (SGK Cánh Diều trang 61,62)

Hướng dẫn giải

a)

Các đơn thức của đa thức P(x) là: \(2x;3\).

Các đơn thức của đa thức Q(x) là: \(x;1\).

Tích mỗi đơn thức P(x) với từng đơn thức của đa thức Q(x) lần lượt là: \(2{x^2};2x;3x;3\).

b) Cộng các tích vừa tìm được:

\(2{x^2} + 2x + 3x + 3 = 2{x^2} + 5x + 3\).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập 3 (SGK Cánh Diều trang 61,62)

Hướng dẫn giải

a) \(\begin{array}{l}({x^2} - 6)({x^2} + 6) = {x^2}({x^2} + 6) + ( - 6).({x^2} + 6) = {x^2}.{x^2} + {x^2}.6) + ( - 6).{x^2} + ( - 6).6\\ = {x^4} + 6{x^2} - 6{x^2} - 36 = {x^4} - 36\end{array}\)

b) \(\begin{array}{l}(x - 1)({x^2} + x + 1) = x({x^2} + x + 1) + ( - 1)({x^2} + x + 1) = x.{x^2} + x.x + x.1 + ( - 1).{x^2} + ( - 1).x + ( - 1).1\\ = {x^3} + {x^2} + x - {x^2} - x - 1 = {x^3} - 1\end{array}\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 1 (SGK Cánh Diều trang 63)

Hướng dẫn giải

a)

\(\dfrac{1}{2}{x^2}.\dfrac{6}{5}{x^3} = \dfrac{1}{2}.\dfrac{6}{5}.{x^2}.{x^3} = \dfrac{3}{5}{x^5}\);                                                   

b)

\(\begin{array}{l}{y^2}(\dfrac{5}{7}{y^3} - 2{y^2} + 0,25) = {y^2}.\dfrac{5}{7}{y^3} - {y^2}.2{y^2} + {y^2}.0,25)\\ = \dfrac{5}{7}{y^5} - 2{y^4} + 0,25{y^2}\end{array}\);

c)

\(\begin{array}{l}(2{x^2} + x + 4)({x^2} - x - 1) \\= 2{x^2}({x^2} - x - 1) + x({x^2} - x - 1) + 4({x^2} - x - 1)\\ = 2{x^4} - 2{x^3} - 2{x^2} + {x^3} - {x^2} - x + 4{x^2} - 4x - 4 \\= 2{x^4} - {x^3} + {x^2} - 5x - 4\end{array}\);                                                               

d)

\(\begin{array}{l}(3x - 4)(2x + 1) - (x - 2)(6x + 3) \\= 3x(2x + 1) - 4(2x + 1) - x(6x + 3) + 2(6x + 3)\\ = 6{x^2} + 3x - 8x - 4 - 6{x^2} - 3x + 12x + 6\\ = 4x + 2\end{array}\).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)