Bài 4. Hai mặt phẳng song song

Hoạt động 1 (Giải mục 1 trang 113, 114 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

a: (ABC) và (ABD); (A'B'C') và (A'B'D'); (AA'B) và (AA'B'),...

b: Không có hai mp phân biệt nào có 1 điểm chung

c: (ABCD) và (A'B'C'D')

(ABB'A') và (CDD'C')

(Trả lời bởi Nguyễn Lê Phước Thịnh)
Thảo luận (1)

Vận dụng 1 (Giải mục 1 trang 113, 114 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

- các ngăn của giá sách

- mặt của giá sách so với mặt đất

(Trả lời bởi Nguyễn Lê Phước Thịnh)
Thảo luận (1)

Hoạt động 2 (Giải mục 1 trang 113, 114 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

a) Gọi \(I\) là giao điểm của \(a\) và \(b\).

Ta có:

\(\begin{array}{l}\left. \begin{array}{l}a\parallel \left( Q \right)\\\left( P \right) \supset a\\\left( P \right) \cap \left( Q \right) = c\end{array} \right\} \Rightarrow c\parallel a\\\left. \begin{array}{l}b\parallel \left( Q \right)\\\left( P \right) \supset b\\\left( P \right) \cap \left( Q \right) = c\end{array} \right\} \Rightarrow c\parallel b\end{array}\)

Do đó qua \(I\) ta kẻ được hai đường thẳng \(a\) và \(b\) cùng song song với \(c\), mâu thuẫn với định lí qua một điểm nằm ngoài một đường thẳng, có một và chỉ một đường thẳng song song với đường thẳng đó.

Vậy \(c\) phải cắt ít nhất một trong hai đường thẳng \(a,b\).

Nếu đường thẳng \(c\) cắt đường thẳng \(a\) hoặc đường thẳng \(b\), mà đường thẳng \(c\) nằm trong mặt phẳng \(\left( Q \right)\), khi đó đường thẳng \(a\) hoặc đường thẳng \(b\) có 1 điểm chung với mặt phẳng \(\left( Q \right)\). Điều này trái với giả thiết \(a\) và \(b\) cùng song song với \(\left( Q \right)\).

b) Vì \(\left( P \right)\) chứa đường thẳng \(a\) mà \(a\) song song với mặt phẳng \(\left( Q \right)\) nên \(\left( P \right)\) và \(\left( Q \right)\) là hai mặt phẳng phân biệt.

Theo chứng minh ở trên, nếu \(\left( P \right)\) và \(\left( Q \right)\) có điểm chung \(M\) thì mâu thuẫn với giả thiết \(a\) và \(b\) cùng song song với \(\left( Q \right)\).

Vậy hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) không có điểm chung.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Thực hành 1 (Giải mục 1 trang 113, 114 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

loading...

Ta có: \(E\) là trung điểm của \(AB\)

\(F\) là trung điểm của \(AC\)

\( \Rightarrow EF\) là đường trung bình của tam giác \(ABC\)

\(\left. \begin{array}{l} \Rightarrow EF\parallel BC\\BC \subset \left( {BC{\rm{D}}} \right)\end{array} \right\} \Rightarrow EF\parallel \left( {BC{\rm{D}}} \right)\)

\(E\) là trung điểm của \(AB\)

\(H\) là trung điểm của \(AD\)

\( \Rightarrow EH\) là đường trung bình của tam giác \(ABD\)

\(\left. \begin{array}{l} \Rightarrow EH\parallel BD\\BD \subset \left( {BC{\rm{D}}} \right)\end{array} \right\} \Rightarrow EH\parallel \left( {BC{\rm{D}}} \right)\)

Ta có:

\(\left. \begin{array}{l}EF\parallel \left( {BCD} \right)\\EH\parallel \left( {BCD} \right)\\EF,EH \subset \left( {EFH} \right)\end{array} \right\} \Rightarrow \left( {EFH} \right)\parallel \left( {BCD} \right)\)

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Hoạt động 3 (Giải mục 1 trang 113, 114 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

a) Qua điểm \(A\), ta vẽ được duy nhất một đường thẳng \(a\) song song với đường thẳng \(a'\).

Qua điểm \(A\), ta vẽ được duy nhất một đường thẳng \(b\) song song với đường thẳng \(b'\).

Ta có:

\(\begin{array}{l}\left. \begin{array}{l}a\parallel a'\\a' \subset \left( Q \right)\end{array} \right\} \Rightarrow a\parallel \left( Q \right)\\\left. \begin{array}{l}b\parallel b'\\b' \subset \left( Q \right)\end{array} \right\} \Rightarrow b\parallel \left( Q \right)\end{array}\)

b) Ta có:

\(\left. \begin{array}{l}a\parallel \left( Q \right)\\b\parallel \left( Q \right)\\a,b \subset mp\left( {a,b} \right)\end{array} \right\} \Rightarrow mp\left( {a,b} \right)\parallel \left( Q \right)\)

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Hoạt động 4 (Giải mục 1 trang 113, 114 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

Ta có:

\(\left. \begin{array}{l}a \subset \left( P \right)\\b \subset \left( Q \right)\\\left( P \right)\parallel \left( Q \right)\end{array} \right\} \Rightarrow a \cap b = \emptyset \)

Vì hai đường thẳng \(a\) và \(b\) cùng nằm trong mặt phẳng \(\left( R \right)\) và không có điểm chung nên \(a\parallel b\).

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Thực hành 2 (Giải mục 1 trang 113, 114 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

Tham khảo hình vẽ:

TH1: \(\left( \alpha  \right)\) cắt đoạn \(AO\) tại \(I\).

Gọi \(E,F,G\) lần lượt là giao điểm của \(\left( \alpha  \right)\) với \(SA,AB,AD\).

Ta có:

\(\begin{array}{l}\left. \begin{array}{l}\left( \alpha  \right)\parallel \left( {SBD} \right)\\\left( \alpha  \right) \cap \left( {ABCD} \right) = FG\\\left( {SBD} \right) \cap \left( {ABCD} \right) = B{\rm{D}}\end{array} \right\} \Rightarrow FG\parallel B{\rm{D}} \Rightarrow \frac{{AF}}{{AB}} = \frac{{AG}}{{AD}} = \frac{{FG}}{{B{\rm{D}}}}\left( 1 \right)\\\left. \begin{array}{l}\left( \alpha  \right)\parallel \left( {SBD} \right)\\\left( \alpha  \right) \cap \left( {SAB} \right) = EF\\\left( {SAB} \right) \cap \left( {SB{\rm{D}}} \right) = SB\end{array} \right\} \Rightarrow EF\parallel SB \Rightarrow \frac{{AF}}{{AB}} = \frac{{AE}}{{AS}} = \frac{{EF}}{{SB}}\left( 2 \right)\\\left. \begin{array}{l}\left( \alpha  \right)\parallel \left( {SBD} \right)\\\left( \alpha  \right) \cap \left( {SAD} \right) = EG\\\left( {SAD} \right) \cap \left( {SB{\rm{D}}} \right) = SD\end{array} \right\} \Rightarrow EG\parallel SD \Rightarrow \frac{{AG}}{{AD}} = \frac{{AE}}{{AS}} = \frac{{EG}}{{SD}}\left( 3 \right)\end{array}\)

Từ (1), (2) và (3) suy ra \(\frac{{EF}}{{SB}} = \frac{{EG}}{{S{\rm{D}}}} = \frac{{FG}}{{B{\rm{D}}}}\).

Tam giác \(SBD\) đều nên \(SB = SD = BD\).

Do đó \(EF = EG = FG\). Vậy tam giác \(EFG\) đều.

(Trả lời bởi Hà Quang Minh)
Thảo luận (2)

Vận dụng 2 (Giải mục 1 trang 113, 114 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

Vì các lớp bánh là các mp song song, nên giao tuyến tạo bởi (P) với các bề mặt song song với nhau

(Trả lời bởi Nguyễn Lê Phước Thịnh)
Thảo luận (1)

Hoạt động 5 (Giải mục 1 trang 113, 114 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

a) Ta có:

\(\left. \begin{array}{l}\left( Q \right)\parallel \left( R \right)\\\left( {ACC'} \right) \cap \left( Q \right) = B{B_1}\\\left( {ACC'} \right) \cap \left( R \right) = CC'\end{array} \right\} \Rightarrow B{B_1}\parallel CC' \Rightarrow \frac{{AB}}{{BC}} = \frac{{A{B_1}}}{{{B_1}C'}}\left( 1 \right)\)

b) Ta có:

\(\left. \begin{array}{l}\left( P \right)\parallel \left( Q \right)\\\left( {AA'C'} \right) \cap \left( Q \right) = B{B_1}\\\left( {AA'C'} \right) \cap \left( P \right) = AA'\end{array} \right\} \Rightarrow B{B_1}\parallel AA' \Rightarrow \frac{{A{B_1}}}{{{B_1}C'}} = \frac{{A'B'}}{{B'C'}}\left( 2 \right)\)

c) Từ (1) và (2) suy ra \(\frac{{AB}}{{BC}} = \frac{{A'B'}}{{B'C'}} \Rightarrow \frac{{AB}}{{A'B'}} = \frac{{BC}}{{B'C'}} = \frac{{AB + BC}}{{A'B' + B'C'}} = \frac{{AC}}{{A'C'}}\)

Vậy \(\frac{{AB}}{{A'B'}} = \frac{{BC}}{{B'C'}} = \frac{{AC}}{{A'C'}}\).

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Thực hành 3 (Giải mục 1 trang 113, 114 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

loading...

Ta có: \(\left( {MM'M''} \right)\parallel \left( {NN'N''} \right)\parallel \left( {ABC} \right)\) nên theo định lí Thalès ta có:

\(\frac{{SM}}{{SA}} = \frac{{SM'}}{{SB}} \Leftrightarrow SM' = \frac{{SM.SB}}{{SA}} = \frac{{4.12}}{9} = \frac{{16}}{3}\)

\(\frac{{SA}}{{SB}} = \frac{{MN}}{{M'N'}} \Leftrightarrow M'N' = \frac{{MN.SB}}{{SA}} = \frac{{3.12}}{9} = 4\)

\(\frac{{SA}}{{SC}} = \frac{{MN}}{{M''N''}} \Leftrightarrow M''N'' = \frac{{MN.SC}}{{SA}} = \frac{{3.15}}{9} = 5\)

\(\frac{{SA}}{{SC}} = \frac{{NA}}{{N''C}} \Leftrightarrow N''C = \frac{{NA.SC}}{{SA}} = \frac{{2.15}}{9} = \frac{{10}}{3}\)

 

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)