Bài 31. Định nghĩa và ý nghĩa của đạo hàm

Giải mục 1 trang 81, 82 (SGK Kết nối tri thức và cuộc sống)

Hướng dẫn giải

a: Vận tốc trung bình là;

\(\dfrac{s\left(t\right)-s\left(t0\right)}{t-t0}\)

b: Cho ta biết một điều đó là Khi t càng tới gần t0, có nghĩa là |t-t0| càng nhỏ thì vận tốc trung bình càng thể hiện được chính xác hơn mức độ nhanh chậm của chuyển động tại thời điểm t0.

(Trả lời bởi Nguyễn Lê Phước Thịnh)
Thảo luận (1)

Giải mục 1 trang 81, 82 (SGK Kết nối tri thức và cuộc sống)

Hướng dẫn giải

a: Cường độ trung bình là:

\(I\left(t\right)=\dfrac{Q\left(t\right)-Q\left(t0\right)}{t-t0}\)

b: Cho biết cường độ trung bình khi t chạy tới t0 thì ngày càng được thể hiện chính xác hơn, rõ ràng hơn.

(Trả lời bởi Nguyễn Lê Phước Thịnh)
Thảo luận (1)

Giải mục 2 trang 83 (SGK Kết nối tri thức và cuộc sống)

Hướng dẫn giải

\(\begin{array}{c}f'\left( { - 1} \right) = \mathop {\lim }\limits_{x \to  - 1} \frac{{f\left( x \right) - f\left( { - 1} \right)}}{{x + 1}} = \mathop {\lim }\limits_{x \to  - 1} \frac{{ - {x^2} + 2x + 1 + 2}}{{x + 1}} = \mathop {\lim }\limits_{x \to  - 1} \frac{{ - {x^2} + 2x + 3}}{{x + 1}}\\ = \mathop {\lim }\limits_{x \to  - 1} \frac{{\left( {x + 1} \right)\left( {3 - x} \right)}}{{x + 1}} = \mathop {\lim }\limits_{x \to  - 1} \left( {3 - x} \right) = 3 + 1 = 4\end{array}\)

Vậy \(f'\left( { - 1} \right) = 4\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Giải mục 3 trang 83, 84 (SGK Kết nối tri thức và cuộc sống)

Hướng dẫn giải

a: \(f'\left(x_0\right)=\lim\limits_{x\rightarrow x0}\dfrac{f\left(x\right)-f\left(x0\right)}{x-x0}=\lim\limits_{x\rightarrow x0}\dfrac{c-c}{x-x0}=0\)

b: \(f'\left(x0\right)=\lim\limits_{x\rightarrow x0}\dfrac{f\left(x\right)-f\left(x0\right)}{x-x0}=\lim\limits_{x\rightarrow x0}\dfrac{x-x0}{x-x0}=1\)

(Trả lời bởi Nguyễn Lê Phước Thịnh)
Thảo luận (1)

Giải mục 3 trang 83, 84 (SGK Kết nối tri thức và cuộc sống)

Hướng dẫn giải

a: \(f'\left(x0\right)=\lim\limits_{x\rightarrow x0}\dfrac{f\left(x\right)-f\left(x0\right)}{x-x0}=\lim\limits_{x\rightarrow x0}\dfrac{x^2+1-x_0^2-1}{x-x_0}\)

\(=\lim\limits_{x\rightarrow x0}\dfrac{\left(x-x0\right)\left(x+x0\right)}{x-x0}=\lim\limits_{x\rightarrow x0}x+x0=x0+x0=2x0\)

b: \(f'\left(x0\right)=\lim\limits_{x\rightarrow x0}\dfrac{f\left(x\right)-f\left(x0\right)}{x-x0}\)

\(=\lim\limits_{x\rightarrow x0}\dfrac{kx+c-k\cdot x0-c}{x-x0}=\lim\limits_{x\rightarrow x0}\dfrac{k\left(x-x0\right)}{x-x0}\)

=\(\lim\limits_{x\rightarrow x0}k=k\)

 

 

(Trả lời bởi Nguyễn Lê Phước Thịnh)
Thảo luận (1)

Giải mục 4 trang 84, 85 (SGK Kết nối tri thức và cuộc sống)

Hướng dẫn giải

a, Hệ số góc của cát tuyến PQ là \(k_{PQ}=\dfrac{f\left(x\right)-f\left(x_0\right)}{x-x_0}\)

b, Khi \(x\rightarrow x_0\) thì vị trí của điểm ​\(Q\left(x;f\left(x\right)\right)\)​ trên đồ thị (C) sẽ tiến gần đến điểm \(P\left(x_0;f\left(x_0\right)\right)\) và khi \(x=x_0\) thì hai điểm này sẽ trùng nhau.

c, Nếu điểm Q di chuyển trên (C) tới điểm P mà \(k_{PQ}\) có giới hạn hữu hạn k thì cát tuyến PQ cũng sẽ tiến đến gần vị trí tiếp tuyến của đồ thị (C) tại điểm P. Vì vậy, giới hạn của cát tuyến QP sẽ là đường thẳng tiếp tuyến tại điểm P

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Giải mục 4 trang 84, 85 (SGK Kết nối tri thức và cuộc sống)

Hướng dẫn giải

Ta có: \(y'\left(\dfrac{1}{2}\right)=2\cdot\dfrac{1}{2}=1\)

Vậy hệ số góc của tiếp tuyến của parabol \(y=x^2\) tại điểm có hoàng độ \(x_0=\dfrac{1}{2}\) là k = 1.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Giải mục 4 trang 84, 85 (SGK Kết nối tri thức và cuộc sống)

Hướng dẫn giải

a, Ta có: \(y'=\left(x^2\right)'=2x\Rightarrow y'\left(1\right)=2\cdot1=2\)

Vậy hệ số góc của tiếp tuyến của parabol \(y=x^2\) tại điểm có hoàng độà k = 2.

b, Ta có: \(y_0=1^2=1\)

Vậy phương trình tiếp tuyến là \(y=y'\left(x_0\right)\left(x-x_0\right)+y_0=2\left(x-1\right)+1=2x-1\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Giải mục 4 trang 84, 85 (SGK Kết nối tri thức và cuộc sống)

Hướng dẫn giải

Ta có:

 \(y'=\left(-2x^2\right)'=-4x\Rightarrow y'\left(-1\right)=-4\cdot\left(-1\right)=4\)

\(y_0=-2\cdot\left(-1\right)^2=-2\)

Phương trình tiếp tuyến là: \(y=4\left(x+1\right)-2=4x+2\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Giải mục 4 trang 84, 85 (SGK Kết nối tri thức và cuộc sống)

Hướng dẫn giải

Chọn hệ trục tọa độ Oxy sao cho O là trung điểm AB, tia Ox trùng với tia OB, tia Oy hướng lên trên.

Khi đó \(A\left(-200;0\right),B\left(200;0\right)\). Gọi chiều cao giới hạn của cầu là h (h > 0), suy ra đỉnh cầu có tọa độ (0;h)

Ta tìm được phương trình parabol của cầu là: \(y=-\dfrac{h}{200^2}\cdot x^2+h\)

Ta có: \(y'=-\dfrac{2h}{200^2}\cdot x\), suy ra hệ số góc xác định độ dốc của mặt cầu là

\(k=y'=-\dfrac{2h}{200^2}\cdot x;-200\le x\le200\)

Vì độ dốc của mặt cầu không quá 10o nên ta có: \(\dfrac{h}{100}\le tan10^o\Leftrightarrow h\le17,6\)

Vậy chiều cao giới hạn từ đỉnh cầu tới mặt đường là 17,6cm

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)