Hình thang cân ABCD có AB // CD, O là giao điểm của hai đường chéo. Chứng minh rằng OA = OB, OC = OD ?
Hình thang cân ABCD có AB // CD, O là giao điểm của hai đường chéo. Chứng minh rằng OA = OB, OC = OD ?
Cho tam giác ABC cân tại A. Trên các cạnh bên AB, AC lấy các điểm M, N sao cho BM = CN
a) Tứ giác BMNC là hình gì ? Vì sao ?
b) Tính các góc của tứ giác BMNC biết rằng \(\widehat{A}=40^0\)
Thảo luận (1)Hướng dẫn giải
Cho tam giác ABC cân tại A, các đường phân giác BE, CF. Chứng minh rằng BFEC là hình thang cân có đáy nhỏ bằng cạnh bên ?
Thảo luận (2)Hướng dẫn giải
Ta có: \(\Delta ABC\) cân tại A (gt)
mà BE, CF lần lượt là tia phân giác của \(\widehat{ABC}\) và \(\widehat{ACB}\) (gt)
=> BE = CF
Xét \(\Delta ABE\) và \(\Delta ACF\) có:
BE = CF (cmt)
\(\widehat{ABE}=\widehat{ACF}\) \(\left(\widehat{ABC}=\widehat{ACB}=2\widehat{ABE}=2\widehat{ACF}\right)\)
AB = AC (\(\Delta ABC\) cân tại A)
Do đó: \(\Delta ABE=\Delta ACF\left(c.g.c\right)\)
=> AE = AF (2 cạnh tương ứng)
=> \(\Delta AFE\) cân tại A
mà \(\Delta ABC\) cân tại A
nên \(\widehat{ABC}=\widehat{AFE}\)
mà chúng ở vị trí đồng vị
=> FE // BC (dấu hiệu nhận biết)
=> BFEC là hình thang
mà BE = CF
=> BFEC là hình thang cân
Ta có: EF // BC (cmt)
=> \(\widehat{EFC}=\widehat{FCB}\) (2 góc so le trong)
mà \(\widehat{FCB}=\widehat{ECF}\) (CF là tia phân giác \(\widehat{ECB}\))
=> \(\Delta FEC\) cân tại E (t/c tam giác cân)
=> FE = EC (Đ/N tam giác cân)
mà hình thang BFEC cân
=> BFEC là hình thang cân có đáy nhỏ bằng cạnh bên
(Trả lời bởi Đời về cơ bản là buồn......)
Chứng minh rằng hình thang có hai đường chéo bằng nhau là hình thang cân ?
Thảo luận (2)Hướng dẫn giải
Kẻ BE // AC (\(E \in DC\))
Hình thang ABEC (AB // CE) có 2 cạnh bên BE // AC.
=> BE = AC.
Mà AC = BD.
=> BE = BD.
=> ΔBDE cân tại B.
=> \(\widehat{D_1}=\widehat{E}\) (1)
Ta có: BE // AC (cách vẽ)
=> \(\widehat{C_1}=\widehat{E}\) (đồng vị)
Từ (1) và (2) suy ra \(\widehat{D_1}=\widehat{C_1}\)
Xét ΔADC và ΔBCD có:
+ AC = BD (gt)
+ \(\widehat{D_1}=\widehat{C_1}\) (cmt)
+ DC là cạnh chung.
=> ΔADC = ΔBCD (c - g - c)
=> \(\widehat{ADC}=\widehat{BCD}\) (2 góc tương ứng)
Suy ra: ABCD là hình thang cân (đpcm)
(Trả lời bởi TAPN)
Tính các góc của hình thang cân, biết 1 góc bằng \(50^0\) ?
Thảo luận (2)Hướng dẫn giảiGọi Hình thang là ABCD( AB//CD) cân có \(\widehat{B}=50^o\)
AB // CD \(\Rightarrow\widehat{B}+\widehat{C}=180^o\) ( hai góc trong cùng phía)
\(\Rightarrow\widehat{C}=180^o-\widehat{B}=180-50=130^o\)
ABCD là Hình thang \(\widehat{A}=\widehat{B}=50^o\)( Tính chất Hình thang cân)
\(\widehat{C}=\widehat{B}=130^o\) ( Tính chất Hình thang cân)
(Trả lời bởi Trần Đăng Nhất)
Hình thang cân ABCD có đáy nhỏ AB bằng cạnh bên AD. Chứng minh rằng CA là tia phân giác của góc C ?
Thảo luận (1)Hướng dẫn giảiTa có: \(AB = AD\)
Mà \(AD = BC\) (ABCD là hình thang cân)
\(\Rightarrow AB=BC\)
Nối A và C
Ta có: \(AB=BC\Rightarrow\Delta ABC\) là \(\Delta\) cân \(\Rightarrow\widehat{BAC}=\widehat{BCA}\) (1)
Ta lại có: AB // CD (ABCD là hình tang cân)
\(\Rightarrow\widehat{BAC}=\widehat{ACD}\) ( cặp góc so le trong) (2)
Từ (1) và (2) \(\Rightarrow\widehat{BCA}=\widehat{ACD}\Rightarrow CA\) là phân giác của \(\widehat{C}\) (ĐPCM)
(Trả lời bởi Trần Đăng Nhất)
Hai đoạn thẳng AB và CD cắt nhau tại O. Biết rằng OA = OC, OB = OD. Tứ giác ACBD là hình gì ? Vì sao ?
Thảo luận (1)Hướng dẫn giải
Cho tam giác ABC cân tại A. Lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho DA = AE
a) Tứ giác BDEC là hình gì ? Vì sao ?
b) Các điểm D, E ở vị trí nào thì BD = DE = EC ?
Thảo luận (1)Hướng dẫn giải
Hình thang cân ABCD có O là giao điểm của hai đường thẳng chứa cạnh bên AD, BC và E là giao điểm của hai đường chéo. Chứng minh rằng OE là đường trung trực của hai đáy ?
Thảo luận (1)Hướng dẫn giải
a) Hình thang cân ABCD có đáy nhỏ AB = b, đáy lớn CD = a, đường cao AH.
Chứng minh rằng :
\(HD=\dfrac{a-b}{2};HC=\dfrac{a+b}{2}\) (a và b có cùng đơn vị đo)
b) Tính đường cao của hình thang cân có hai đáy 10cm, 26cm và cạnh bên 17cm
Thảo luận (1)Hướng dẫn giải