Lập bảng biến thiên và vẽ đồ thị hàm số:
a) \(y = {4^x}\)
b) \(y = {\log _{\frac{1}{4}}}x\)
Lập bảng biến thiên và vẽ đồ thị hàm số:
a) \(y = {4^x}\)
b) \(y = {\log _{\frac{1}{4}}}x\)
Tìm tập xác định của các hàm số:
a) \(y = 12{}^x\)
b) \(y = {\log _5}(2x - 3)\)
c) \(y = {\log _{\frac{1}{5}}}\left( { - {x^2} + 4} \right)\)
Thảo luận (1)Hướng dẫn giải\(a,D=R\\ b,2x-3>0\\ \Rightarrow x>\dfrac{3}{2}\\ \Rightarrow D=(\dfrac{3}{2};+\infty)\\ c,-x^2+4>0\\ \Rightarrow x^2< 4\\ \Leftrightarrow-2< x< 2\\ \Rightarrow D=\left(-2;2\right)\)
(Trả lời bởi Hà Quang Minh)
Trong các hàm số sau, hàm số nào đồng biến, hàm số nào nghịch biến trên khoảng xác định của hàm số đó? Vì sao?
a) \(y = {\left( {\frac{{\sqrt 3 }}{2}} \right)^x}\)
b) \(y = {\left( {\frac{{\sqrt[3]{{26}}}}{3}} \right)^x}\)
c) \(y = {\log _\pi }x\)
d) \(y = {\log _{\frac{{\sqrt {15} }}{4}}}x\)
Thảo luận (1)Hướng dẫn giải\(\dfrac{\sqrt{3}}{2}< 1;\dfrac{\sqrt[3]{26}}{3}< 1;\pi>1;\dfrac{\sqrt{15}}{4}< 1\)
Hàm số đồng biến là: \(log_{\pi}x\)
Hàm số nghịch biến là: \(\left(\dfrac{\sqrt{3}}{2}\right)^x;\left(\dfrac{\sqrt[3]{26}}{3}\right)^x;log_{\dfrac{\sqrt{15}}{4}}x\)
(Trả lời bởi Hà Quang Minh)
Ta coi năm lấy làm mốc để tính dân số của một vùng (hoặc một quốc gia) là năm 0. Khi đó, dân số của quốc gia đó ở năm thứ t là hàm số theo biến t được cho bởi công thức \(S = A.{e^{r.t}}\). Trong đó A là dân số của vùng (hoặc quốc gia) đó ở năm O và r là tỉ lệ tăng dân số hàng năm. Biết rằng dân số Việt Nam năm 2021 ước tính là 98 564 407 người và tỉ lệ tăng dân số là 0,93%/năm. Giả sử tỉ lệ tăng dân số hàng năm là như nhau tính từ năm 2021, nêu dự đoán dân số Việt Nam năm 2030 (làm tròn kết quả đến hàng đơn vị).
Thảo luận (1)Hướng dẫn giảiDân số Việt Nam năm 2030 vào khoảng:
\(S=98564407\cdot e^{0,93\%\cdot9}=107169341\left(người\right)\)
(Trả lời bởi Hà Quang Minh)
Các nhà tâm lí học sử dụng mô hình hàm số mũ để mô phỏng quá trình học tập của một học sinh như sau: \(f(t) = c(1 - {e^{ - kt}})\), trong đó c là tổng số đơn vị kiến thức học sinh phải học, k (kiến thức / ngày) là tốc độ tiếp thu của học sinh, t (ngày) là thời gian học và f(t) là số đơn vị kiến thức học sinh đã học được. Giả sử một em học sinh phải tiếp thu 25 đơn vị kiến thức mới. Biết rằng tốc độ tiếp thu của em học sinh là k = 0,2. Hỏi em học sinh sẽ nhớ được (khoảng) bao nhiêu đơn vị kiến thức mới sau 2 ngày? Sau 8 ngày?
Thảo luận (1)Hướng dẫn giảiHọc sinh nhớ được sau 2 ngày là: \(f\left(2\right)=25\cdot\left(1-e^{-0,2\cdot2}\right)\simeq8\) (đơn vị kiến thức)
Học sinh nhớ được sau 8 ngày là: \(f\left(8\right)=25\cdot\left(1-e^{-0,2\cdot8}\right)\simeq20\) (đơn vị kiến thức)
(Trả lời bởi Hà Quang Minh)
Chỉ số hay độ pH của một dung dịch được tính theo công thức: \(pH = - \log [{H^ + }]\). Phân tích nồng độ ion hydrogen \([{H^ + }]\) trong hai mẫu nước sông, ta có kết quả sau: Mẫu 1: \([{H^ + }] = {8.10^{ - 7}}\), Mẫu 2: \([{H^ + }] = {2.10^{ - 9}}\). Không dùng máy tính cầm tay, hãy so sánh độ pH của hai mẫu nước trên.
Thảo luận (1)Hướng dẫn giảiMẫu 1 có độ pH là:
\(pH=-log\left[H^+\right]=-log\left(8\cdot10^{-7}\right)=-log8+7=-3log2+7\)
Mẫu 2 có độ pH là:
\(pH'=-log\left[H^+\right]=-log\left(2\cdot10^{-9}\right)=-log2+9\)
Ta có:
\(pH-pH'=-3log2+7+log2-9=-2log2-2< 0\\ \Rightarrow pH< pH'\)
Mẫu 2 có độ pH lớn hơn mẫu 1.
(Trả lời bởi Hà Quang Minh)
Một người gửi 10 triệu đồng vào ngân hàng theo hình thức lãi kép có kì hạn là 12 tháng với lãi suất 6%/ năm. Giả sử qua các năm thì lãi suất không thay đổi và người đó không gửi thêm tiền vào mỗi năm. Để biết sau y (năm) thì tổng số tiền cả vốn và lãi có được là x (đồng), người đó sử dụng công thức \(y = {\log _{1,06}}\left( {\frac{x}{{10}}} \right)\). Hỏi sau bao nhiêu năm thì người đó có được tổng số tiền cả vốn và lãi là 15 triệu đồng? 20 triệu đồng? (Làm tròn kết quả đến hàng đơn vị).
Thảo luận (1)Hướng dẫn giảiSố năm để người đó có được tổng số tiền cả vốn và lãi 15 triệu đồng là:
\(y_1=log_{1,06}\left(\dfrac{15}{10}\right)\simeq7\left(năm\right)\)
Số năm để người đó có được tổng số tiền cả vốn và lãi 20 triệu đồng là:
\(y_2=log_{1,06}\left(\dfrac{20}{10}\right)\simeq12\left(năm\right)\)
(Trả lời bởi Hà Quang Minh)