Bài 3. Đường thẳng và mặt phẳng song song

Bài 3 (trang 112 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

Tham khảo hình vẽ:

a) Ta có:

\(\begin{array}{l}MN = \left( \alpha  \right) \cap \left( {ABC{\rm{D}}} \right)\\C{\rm{D}} = \left( {SC{\rm{D}}} \right) \cap \left( {ABC{\rm{D}}} \right)\\PQ = \left( \alpha  \right) \cap \left( {SC{\rm{D}}} \right)\\MN\parallel C{\rm{D}}\end{array}\)

Do đó theo định lí 2 về giao tuyến của ba mặt phẳng ta có: \(MN\parallel C{\rm{D}}\parallel PQ\).

\( \Rightarrow MNPQ\) là hình bình hành.

b) Ta có:

\(\begin{array}{l}\left. \begin{array}{l}I \in MQ \Rightarrow I \in \left( {SA{\rm{D}}} \right)\\I \in NP \Rightarrow I \in \left( {SBC} \right)\end{array} \right\} \Rightarrow I \in \left( {SA{\rm{D}}} \right) \cap \left( {SBC} \right)\\ \Rightarrow SI = \left( {SA{\rm{D}}} \right) \cap \left( {SBC} \right)\\A{\rm{D}} = \left( {SA{\rm{D}}} \right) \cap \left( {ABC{\rm{D}}} \right)\\BC = \left( {SBC} \right) \cap \left( {ABC{\rm{D}}} \right)\\BC\parallel A{\rm{D}}\end{array}\)

Do đó theo định lí 2 về giao tuyến của ba mặt phẳng ta có: \(A{\rm{D}}\parallel BC\parallel SI\).

Vậy \(I\) luôn luôn thuộc đường thẳng \(d\) đi qua \(S\) song song với \(AD\) và \(BC\) cố định khi \(M\) di động trên \(AD\).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Bài 4 (trang 112 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

loading...

a) Ta có:

\(\begin{array}{l}MN = \left( \alpha  \right) \cap \left( {ABC} \right)\\PQ = \left( \alpha  \right) \cap \left( {BC{\rm{D}}} \right)\\BC = \left( {ABC} \right) \cap \left( {BC{\rm{D}}} \right)\\MN\parallel BC\end{array}\)

Do đó theo định lí 2 về giao tuyến của ba mặt phẳng ta có: \(MN\parallel PQ\parallel BC\) (1).

\(\begin{array}{l}MQ = \left( \alpha  \right) \cap \left( {ABD} \right)\\NP = \left( \alpha  \right) \cap \left( {AC{\rm{D}}} \right)\\A{\rm{D}} = \left( {ABD} \right) \cap \left( {AC{\rm{D}}} \right)\\MQ\parallel A{\rm{D}}\end{array}\)

Do đó theo định lí 2 về giao tuyến của ba mặt phẳng ta có: \(MQ\parallel NP\parallel A{\rm{D}}\) (2).

Từ (1) và (2) suy ra \(MNPQ\) là hình bình hành.

b) Để \(MNPQ\) là hình thoi thì \(MN = NP\).

Ta có:

\(\begin{array}{l}MN\parallel BC \Rightarrow \frac{{MN}}{{BC}} = \frac{{AN}}{{AC}}\\NP\parallel A{\rm{D}} \Rightarrow \frac{{NP}}{{A{\rm{D}}}} = \frac{{CN}}{{AC}} \Rightarrow \frac{{MN}}{{A{\rm{D}}}} = \frac{{CN}}{{AC}}\end{array}\)

Ta có:

\(\begin{array}{l}\frac{{AN}}{{AC}} + \frac{{CN}}{{AC}} = 1 \Leftrightarrow \frac{{MN}}{{BC}} + \frac{{MN}}{{A{\rm{D}}}} = 1 \Leftrightarrow MN.\left( {\frac{1}{{BC}} + \frac{1}{{A{\rm{D}}}}} \right) = 1\\ \Leftrightarrow MN.\frac{{BC + A{\rm{D}}}}{{BC.A{\rm{D}}}} = 1 \Leftrightarrow MN = \frac{{BC.A{\rm{D}}}}{{BC + A{\rm{D}}}}\end{array}\)

Vậy nếu \(MN = \frac{{BC.A{\rm{D}}}}{{BC + A{\rm{D}}}}\) thì \(MNPQ\) là hình thoi.

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Bài 5 (trang 112 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

loading...

Qua \(M\) dựng đường thẳng song song với \(BC\), cắt \(AB\) tại \(N\).

Qua \(N\) dựng đường thẳng song song với \(SA\), cắt \(SB\) tại \(P\).

Qua \(P\) dựng đường thẳng song song với \(BC\), cắt \(SC\) tại \(Q\).

Vì \(MN\parallel BC,NP\parallel SA\) nên \(\left( {MNPQ} \right) \equiv \left( P \right)\).

Ta có:

\(\begin{array}{l}MN = \left( P \right) \cap \left( {ABC{\rm{D}}} \right)\\NP = \left( P \right) \cap \left( {SAB} \right)\\PQ = \left( P \right) \cap \left( {SBC} \right)\\MQ = \left( P \right) \cap \left( {SC{\rm{D}}} \right)\end{array}\)

Gọi \(E\) là giao điểm của \(A{\rm{D}}\) và \(MN\), \(F\) là giao điểm của \(S{\rm{D}}\) và \(MQ\). Ta có:

\(\begin{array}{l}\left. \begin{array}{l}E \in A{\rm{D}} \subset \left( {SA{\rm{D}}} \right)\\E \in MN \subset \left( P \right)\end{array} \right\} \Rightarrow E \in \left( P \right) \cap \left( {SA{\rm{D}}} \right)\\\left. \begin{array}{l}F \in S{\rm{D}} \subset \left( {SA{\rm{D}}} \right)\\F \in MQ \subset \left( P \right)\end{array} \right\} \Rightarrow F \in \left( P \right) \cap \left( {SA{\rm{D}}} \right)\\ \Rightarrow EF = \left( P \right) \cap \left( {SA{\rm{D}}} \right)\end{array}\)

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Bài 6 (trang 112 SGK Toán 11 tập 1 - Chân trời sáng tạo)

Hướng dẫn giải

Ta có: \(a \subset \left( P \right),b\parallel \left( P \right),c\parallel \left( P \right),d\) cắt \(\left( P \right),e \subset \left( P \right)\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)