Bài 26. Khoảng cách

Giải mục 3 trang 57, 58 (SGK Kết nối tri thức và cuộc sống)

Hướng dẫn giải

Dựa vào bài học, chúng ta sẽ có các định nghĩa sau đây:

1: Khoảng cách từ một điểm M đến một đường thẳng a là khoảng cách giữa M và hình chiếu H của M trên a.

2: Khoảng cách từ điểm M đến mặt phẳng (P) là khoảng cách giữa M và hình chiếu H của M trên (P)

3: Khoảng cách giữa đường thẳng a và mặt phẳng (P) song song với a là khoảng cách từ một điểm bất kì trên a đến (P).

4: Khoảng cách giữa hai mặt phẳng song song (P) và (Q) là khoảng cách từ một điểm bất kì thuộc mặt phẳng này đến mặt phẳng kia.

Chúng ta có đường vuông góc bao giờ cũng là đường ngắn nhất nối giữa hai điểm bất kì trong hai mặt phẳng phân biệt.

Do đó: Khoảng cách giữa hai mặt phẳng là khoảng cách nhỏ nhất giữa hai điểm bất kì nằm trong hai mặt phẳng đó

(Trả lời bởi Nguyễn Lê Phước Thịnh)
Thảo luận (1)

Bài 7.22 trang 59 (SGK Kết nối tri thức và cuộc sống)

Hướng dẫn giải

a) Gọi E là trung điểm của AD

\(\left( {SAD} \right) \bot \left( {ABCD} \right),\left( {SAD} \right) \cap \left( {ABCD} \right) = AD\)

Mà tam giác SAD đều

\( \Rightarrow \) \(SE \bot \left( {ABCD} \right)\)

Xét tam giác SDE vuông tại E có

\(SE = \sqrt {S{D^2} - D{E^2}}  = \sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}}  = \frac{{a\sqrt 3 }}{2}\)

b) Ta có \(AB \bot AD,AB \bot SE\left( {SE \bot \left( {ABCD} \right)} \right) \Rightarrow AB \bot \left( {SAD} \right)\)

Vì BC // AD (ABCD là hình vuông), \(AD \subset \left( {SAD} \right)\) nên BC // (SAD)

\( \Rightarrow \) d(BC, (SAD)) = d(B, (SAD)) = AB = a

c) Trong (SAD) kẻ  \(AF \bot SD\)

Có \(AB \bot \left( {SAD} \right),AF \subset \left( {SAD} \right) \Rightarrow AB \bot AF\)

\( \Rightarrow \) d(AB, SD) = AF

Vì tam giác SAD đều nên \(AF = SE = \frac{{a\sqrt 3 }}{2}\)

Vậy \(d\left( {AB,{\rm{ }}SD} \right) = \frac{{a\sqrt 3 }}{2}\)

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Bài 7.23 trang 59 (SGK Kết nối tri thức và cuộc sống)

Hướng dẫn giải

a) Trong (ABCD) kẻ \(CE \bot BD\)

Mà \(CE \bot BB'\left( {BB' \bot \left( {ABCD} \right)} \right) \Rightarrow CE \bot \left( {BB'D'D} \right)\)

Ta có CC’ // BB’ \( \Rightarrow \) CC’ // (BB’D’D) \( \Rightarrow \) d(CC’, (BB’D’D)) = d(C, (BB’D’D)) = CE

Xét tam giác BCD vuông tại C có

\(\frac{1}{{C{E^2}}} = \frac{1}{{B{C^2}}} + \frac{1}{{C{D^2}}} = \frac{1}{{{c^2}}} + \frac{1}{{{b^2}}} = \frac{{{b^2} + {c^2}}}{{{c^2}{b^2}}} \Rightarrow CE = \frac{{bc}}{{\sqrt {{b^2} + {c^2}} }}\)

b) \(AC \subset \left( {ABCD} \right),B'D' \subset \left( {A'B'C'D'} \right),\left( {ABCD} \right)//\left( {A'B'C'D'} \right)\)

\( \Rightarrow d\left( {AC,B'D'} \right) = d\left( {\left( {ABCD} \right),\left( {A'B'C'D'} \right)} \right) = BB' = a\)

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Bài 7.24 trang 59 (SGK Kết nối tri thức và cuộc sống)

Bài 7.25 trang 59 (SGK Kết nối tri thức và cuộc sống)

Hướng dẫn giải

loading...

a) AC // A’C’, D’C // A’B \( \Rightarrow \) (D'AC) // (BC'A')

Ta có \(AC \bot BD,AC \bot BB' \Rightarrow AC \bot \left( {BDB'} \right);B'D \subset \left( {BDB'} \right) \Rightarrow AC \bot B'D\)

Mà AC // A’C’ \( \Rightarrow \) \(B'D \bot A'C'\)

Ta có \(AB' \bot A'B,AD \bot A'B \Rightarrow A'B \bot \left( {AB'D} \right);B'D \subset \left( {AB'D} \right) \Rightarrow A'B \bot B'D\)

Mà A’B // D’C \( \Rightarrow \) \(B'D \bot D'C\)

Ta có \(B'D \bot AC,B'D \bot D'C \Rightarrow B'D \bot \left( {D'AC} \right)\)

\(B'D \bot A'C',B'D \bot A'B \Rightarrow B'D \bot \left( {BA'C'} \right)\)

b) Gọi \(AC \cap BD = \left\{ O \right\},A'C' \cap B'D' = \left\{ {O'} \right\}\)

Trong (BB’D’D) nối \(D'O \cap B'D = \left\{ E \right\},BO' \cap B'D = \left\{ F \right\}\)

Vì (D'AC) // (BC'A') nên d((D'AC), (BC'A')) = d(E, (BC'A'))  = EF do \(B'D \bot \left( {BA'C'} \right)\)

\(\left. \begin{array}{l}B'D \bot BO'\left( {B'D \bot \left( {BA'C'} \right)} \right)\\B'D \bot OD'\left( {B'D \bot \left( {D'AC} \right)} \right)\end{array} \right\} \Rightarrow BO'//OD'\)

Áp dụng định lí Talet có \(\frac{{DE}}{{EF}} = \frac{{DO}}{{BO}} = 1 \Rightarrow DE = EF\) và \(\frac{{B'F}}{{EF}} = \frac{{B'O'}}{{O'D'}} = 1 \Rightarrow B'F = EF\)

\( \Rightarrow EF = \frac{{B'D}}{3}\)

Xét tam giác ABD vuông tại A có \(BD = \sqrt {A{B^2} + A{D^2}}  = \sqrt {{a^2} + {a^2}}  = a\sqrt 2 \)

Xét tam giác BB’D vuông tại B có \(B'D = \sqrt {B{{B'}^2} + B{D^2}}  = \sqrt {{a^2} + {{\left( {a\sqrt 2 } \right)}^2}}  = a\sqrt 3 \)

\( \Rightarrow EF = \frac{{a\sqrt 3 }}{3}\)

Vậy \(d\left( {\left( {D'AC} \right),{\rm{ }}\left( {BC'A'} \right)} \right) = \frac{{a\sqrt 3 }}{3}\)

 

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)

Bài 7.26 trang 59 (SGK Kết nối tri thức và cuộc sống)

Hướng dẫn giải

`h` của đáy `=110 . \sqrt{3}/2 = 55\sqrt{3} (cm)`

`d` từ gốc `->`tâm `=2/3 . 55\sqrt{3} = (110\sqrt{3})/3 (cm)`

`h` giá đỡ `=\sqrt{129^{2} - ((110\sqrt{3})/3)^{2} } = \sqrt{37823/3} ~~112,28(cm)`

(Trả lời bởi Đức Anh Phùng)
Thảo luận (1)

Bài 7.27 trang 59 (SGK Kết nối tri thức và cuộc sống)

Hướng dẫn giải

Khi bể nước có đáy thuộc mặt phẳng nằm ngang, thì mặt nước nằm trong mặt phẳng song song với đáy. Vì vậy, để đo độ sâu của bể, ta có thể đo khoảng cách từ mặt nước đến đáy bể.

Khi thả quả dọi vào bể nước, nó sẽ chìm dưới mặt nước và chạm đến đáy bể. Khi kéo quả dọi lên, ta sẽ thấy một đoạn dây dọi nằm trong bể nước và một đoạn dây dọi ở ngoài bể nước. Đoạn dây dọi nằm trong bể nước có độ dài bằng khoảng cách từ mặt nước đến chỗ quả dọi chạm đáy bể. Do đó, để đo độ sâu của bể, ta chỉ cần đo độ dài của đoạn dây dọi nằm trong bể nước.

Công thức để tính độ sâu của bể nước sẽ là:

Độ sâu bể = chiều dài của đoạn dây dọi nằm trong bể nước

(Trả lời bởi Quoc Tran Anh Le)
Thảo luận (1)