Vuông: \(\frac{{2{\rm{x}}}}{{x + 1}}.\frac{{x - 1}}{x} = ?\)
Pi: Nhân các tử với nhau và nhân các mẫu với nhau
Tròn: Thế cách nhân hai phân thức cũng giống như cách nhân hai phân số nhỉ?
Vuông: \(\frac{{2{\rm{x}}}}{{x + 1}}.\frac{{x - 1}}{x} = ?\)
Pi: Nhân các tử với nhau và nhân các mẫu với nhau
Tròn: Thế cách nhân hai phân thức cũng giống như cách nhân hai phân số nhỉ?
Làm theo hướng dẫn của anh Pi trong tình huống mở đầu để nhân hai phân thức \(\frac{{2{\rm{x}}}}{{x + 1}}\) và \(\frac{{x - 1}}{x}\)
Thảo luận (1)Hướng dẫn giảiTa có: \(\frac{{2{\rm{x}}}}{{x + 1}}.\frac{{x - 1}}{x} = \frac{{2{\rm{x}}\left( {x - 1} \right)}}{{x\left( {x + 1} \right)}} = \frac{{2\left( {x - 1} \right)}}{{x + 1}}\)
(Trả lời bởi Hà Quang Minh)
Làm tính nhân:
\(a)\frac{x}{{x + y}}.\frac{{2{\rm{x}} + 2y}}{{3{\rm{x}}y}}\)
\(b)\frac{{3{\rm{x}}}}{{4{{\rm{x}}^2} - 1}}.\frac{{ - 2{\rm{x}} + 1}}{{2{{\rm{x}}^2}}}\)
Thảo luận (1)Hướng dẫn giải\(a)\frac{x}{{x + y}}.\frac{{2{\rm{x}} + 2y}}{{3{\rm{x}}y}}\)
\(\begin{array}{l} = \frac{{2{{\rm{x}}^2} + 2{\rm{x}}y}}{{3{\rm{x}}y(x + y)}}\\ = \frac{{2{\rm{x}}(x + y)}}{{3{\rm{x}}y(x + y)}} = \frac{{2{\rm{x}}}}{{3{\rm{x}}y}}\end{array}\)
\(b)\frac{{3{\rm{x}}}}{{4{{\rm{x}}^2} - 1}}.\frac{{ - 2{\rm{x}} + 1}}{{2{{\rm{x}}^2}}}\)
\(\begin{array}{l} = \frac{{3{\rm{x}}( - 2{\rm{x}} + 1)}}{{2{{\rm{x}}^2}(4{{\rm{x}}^2} - 1)}}\\ = \frac{{ - 3{\rm{x}}}}{{2{{\rm{x}}^2}(2{\rm{x}} + 1)}}\end{array}\)
(Trả lời bởi Hà Quang Minh)
Làm tính chia: \(\frac{{3{\rm{x}}}}{{2{y^2}}}:\left( {\frac{{ - 5{{\rm{x}}^2}}}{{12{y^3}}}} \right)\)
Thảo luận (1)Hướng dẫn giải\(\begin{array}{l}\frac{{3{\rm{x}}}}{{2{y^2}}}:\left( {\frac{{ - 5{{\rm{x}}^2}}}{{12{y^3}}}} \right)\\ = \frac{{3{\rm{x}}}}{{2{y^2}}}.\frac{{12{y^3}}}{{ - 5{{\rm{x}}^2}}}\\ = \frac{{3{\rm{x}}.12{y^3}}}{{2{y^2}.\left( { - 5{{\rm{x}}^2}} \right)}} = \frac{{36{\rm{x}}{y^3}}}{{ - 10{{\rm{x}}^2}{y^2}}} = \frac{{ - 18y}}{{5y}}\end{array}\)
(Trả lời bởi Hà Quang Minh)
Kết luận sau là đúng hay sai?
\(\left( {\frac{1}{x}:\frac{1}{x}} \right):\frac{1}{x} = \frac{1}{x}:\left( {\frac{1}{x}:\frac{1}{x}} \right)\)
Thảo luận (1)Hướng dẫn giảiKết luận sau là sai vì đã là phép chia nó sẽ đổi dấu số thứ `2`
`(1/x: 1/x) : 1/x = 1 * x/1`
`1/x:(1/x:1/x)= 1/x : (1/x * x/1)=1/x *1`
(Trả lời bởi ⭐Hannie⭐)
Bác Châu vay ngân hàng 1,2 tỉ đồng để mua nhà theo hình thức trả góp. Số tiền bác Châu phải trả mỗi tháng bao gồm số tiền gốc phải trả hằng tháng (bằng số tiền gốc chia đều cho số tháng vay) và số tiền lãi phải trả hằng tháng (bằng số tiền gốc nhân với lãi suất tháng).
a) Gọi r là lãi suất năm của khoản vay trả góp này. Tính số tiền x (triệu đồng) mà bác Châu phải trả mỗi thàng theo số tháng vay y (tháng) và lãi suất năm r. Từ đó suy ra công thức tính lãi suất năm r theo x và y
b) Tính giá trị của r tại x = 30, y = 48 rồi cho biết, nếu trả góp mỗi tháng 30 triệu đồng trong vòng 4 năm thì lãi suất năm (tính theo %) của khoản vay là bao nhiêu?
Thảo luận (1)Hướng dẫn giảia) Số tiền x (triệu đồng) mà bác Châu phải trả mỗi tháng là:
\(\begin{array}{l}x = \frac{{1200}}{y} + \left( {1200.\frac{r}{{12}}} \right)\\ \Rightarrow x = \frac{{1200}}{y} + 100{\rm{r}}\\ \Rightarrow r = \frac{{xy - 1200}}{{100y}}\end{array}\)
b) Thay x = 30, y = 48, ta có: r = 0.05
Lãi suất năm của khoản vay khi mỗi tháng trả góp 30 triệu đồng trong vòng 4 năm là:
\(r = \frac{{30.48 - 1200}}{{100.48}} = 0,05 = 5(\% )\)
(Trả lời bởi Hà Quang Minh)
Làm tính nhân phân thức:
\(a)\left( { - \frac{{3{\rm{x}}}}{{5{\rm{x}}{y^2}}}} \right).\left( { - \frac{{5{y^2}}}{{12{\rm{x}}y}}} \right)\)
\(b)\frac{{{x^2} - x}}{{2{\rm{x}} + 1}}.\frac{{4{{\rm{x}}^2} - 1}}{{{x^3} - 1}}\)
Thảo luận (1)Hướng dẫn giải\(a)\left( { - \frac{{3{\rm{x}}}}{{5{\rm{x}}{y^2}}}} \right).\left( { - \frac{{5{y^2}}}{{12{\rm{x}}y}}} \right) = \frac{{\left( { - 3{\rm{x}}} \right).\left( { - 5{y^2}} \right)}}{{5{\rm{x}}{y^2}.12{\rm{x}}y}} = \frac{1}{{4{\rm{x}}y}}\)
\(b)\frac{{{x^2} - x}}{{2{\rm{x}} + 1}}.\frac{{4{{\rm{x}}^2} - 1}}{{{x^3} - 1}} = \frac{{x\left( {x - 1} \right).\left( {2{\rm{x}} - 1} \right)\left( {2{\rm{x}} + 1} \right)}}{{\left( {2{\rm{x}} + 1} \right).\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = \frac{{x\left( {2{\rm{x}} - 1} \right)}}{{{x^2} + x + 1}}\)
(Trả lời bởi Hà Quang Minh)
Thực hiện phép tính:
\(a)\left( { - \frac{{3{\rm{x}}}}{{5{\rm{x}}{y^2}}}} \right):\left( { - \frac{{5{y^2}}}{{12{\rm{x}}y}}} \right)\)
\(b)\frac{{4{{\rm{x}}^2} - 1}}{{8{{\rm{x}}^3} - 1}}:\frac{{4{{\rm{x}}^2} + 4{\rm{x}} + 1}}{{4{{\rm{x}}^2} + 2{\rm{x}} + 1}}\)
Thảo luận (1)Hướng dẫn giải\(a)\left( { - \frac{{3{\rm{x}}}}{{5{\rm{x}}{y^2}}}} \right):\left( { - \frac{{5{y^2}}}{{12{\rm{x}}y}}} \right) = \frac{{ - 3{\rm{x}}}}{{5{\rm{x}}{y^2}}}.\frac{{ - 12{\rm{x}}y}}{{5{y^2}}} = \frac{{36{{\rm{x}}^2}y}}{{25{\rm{x}}{y^4}}}\)
b) \(\frac{4{{\text{x}}^{2}}-1}{8{{\text{x}}^{3}}-1}:\frac{4{{\text{x}}^{2}}+4\text{x}+1}{4{{\text{x}}^{2}}+2\text{x}+1}=\frac{4{{\text{x}}^{2}}-1}{8{{\text{x}}^{3}}-1}.\frac{4{{\text{x}}^{2}}+2\text{x}+1}{4{{\text{x}}^{2}}+4\text{x}+1}\)
\(=\frac{\left( 2\text{x}-1 \right)\left( 2\text{x}+1 \right)\left( 4{{\text{x}}^{2}}+2\text{x}+1 \right)}{\left( 2\text{x}-1 \right)\left( 4{{\text{x}}^{2}}+2\text{x}+1 \right){{\left( 2\text{x}+1 \right)}^{2}}}=\frac{1}{2\text{x}+1}\).
(Trả lời bởi Hà Quang Minh)
Tìm hai phân thức P, Q thoản mãn:
\(a)P.\frac{{x + 1}}{{2{\rm{x}} + 1}} = \frac{{{x^2} + x}}{{4{{\rm{x}}^2} - 1}}\)
\(b)Q:\frac{{{x^2}}}{{{x^2} + 4{\rm{x}} + 4}} = \frac{{\left( {x + 1} \right)\left( {x + 2} \right)}}{{{x^2} - 2{\rm{x}}}}\)
Thảo luận (1)Hướng dẫn giải\(\begin{array}{l}a)P.\frac{{x + 1}}{{2{\rm{x}} + 1}} = \frac{{{x^2} + x}}{{4{{\rm{x}}^2} - 1}}\\P = \frac{{{x^2} + x}}{{4{{\rm{x}}^2} - 1}}:\frac{{x + 1}}{{2{\rm{x}} + 1}}\\P = \frac{{{x^2} + x}}{{4{{\rm{x}}^2} - 1}}.\frac{{2{\rm{x}} + 1}}{{x + 1}}\\P = \frac{{x\left( {x + 1} \right).\left( {2{\rm{x}} + 1} \right)}}{{\left( {2{\rm{x}} - 1} \right)\left( {2{\rm{x}} + 1} \right)\left( {x + 1} \right)}}\\P = \frac{x}{{2{\rm{x}} - 1}}\end{array}\)
\(\begin{array}{l}b)Q:\frac{{{x^2}}}{{{x^2} + 4{\rm{x}} + 4}} = \frac{{\left( {x + 1} \right)\left( {x + 2} \right)}}{{{x^2} - 2{\rm{x}}}}\\Q = \frac{{\left( {x + 1} \right)\left( {x + 2} \right)}}{{{x^2} - 2{\rm{x}}}}.\frac{{{x^2}}}{{{x^2} + 4{\rm{x}} + 4}}\\Q = \frac{{\left( {x + 1} \right)\left( {x + 2} \right).{x^2}}}{{x\left( {x - 2} \right).{{\left( {x + 2} \right)}^2}}}\\Q = \frac{{x\left( {x + 1} \right)}}{{{x^2} - 4}}\end{array}\)
(Trả lời bởi Hà Quang Minh)
Cho hai phân thức \(P = \frac{{{x^2} + 6{\rm{x}} + 9}}{{{x^2} + 3{\rm{x}}}}\) và \(Q = \frac{{{x^2} + 3{\rm{x}}}}{{{x^2} - 9}}\)
a) Rút gọn P và Q
b) Sử dụng kết quả câu a, Tính P.Q và P:Q
Thảo luận (2)Hướng dẫn giải\(a,P=\dfrac{x^2+6x+9}{x^2+3x}\\ =\dfrac{x^2+2\cdot3\cdot x+3^2}{x\left(x+3\right)}\\ =\dfrac{\left(x+3\right)^2}{x\left(x+3\right)}\\ =\dfrac{x+3}{x}\\ Q=\dfrac{x^2+3x}{x^2-9}\\ =\dfrac{x\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}\\ =\dfrac{x}{x-3}\\ b,P\cdot Q=\dfrac{x+3}{x}\cdot\dfrac{x}{x-3}\\ =\dfrac{\left(x+3\right)\cdot x}{x\cdot\left(x-3\right)}\\ =\dfrac{x+3}{x-3}\\ P:Q=\dfrac{x+3}{x}:\dfrac{x}{x-3}\\ =\dfrac{x+3}{x}\cdot\dfrac{x-3}{x}\\ =\dfrac{x^2-9}{x^2}\)
(Trả lời bởi ⭐Hannie⭐)