Bài 2. Giải hệ hai phương trình bậc nhất hai ẩn

Vận dụng 1 (SGK Kết nối tri thức với cuộc sống trang 12)

Hướng dẫn giải

a) Số cây cải trồng trong vườn là \(xy\)

Nếu tăng thêm 8 luống, tức số luống sẽ là \(x + 8\); số bắp cải trồng trong 1 luống giảm đi 3 tức là số cây trong 1 luống sẽ là \(y - 3\), số bắp cải của cả vườn ít sẽ ít đi 108 cây nên ta có \(\left( {x + 8} \right)\left( {y - 3} \right) + 108 = xy\) suy ra \( - 3x + 8y =  - 84.\)

Nếu giảm đi 4 luống, tức số luống sẽ là \(x - 4\), nhưng mỗi luống sẽ trồng thêm 2 cây, tức số cây trong 1 luống sẽ là \(y + 2\) thì số bắp cải cả vườn sẽ tăng thêm 64 cây nên ta có \(\left( {x - 4} \right)\left( {y + 2} \right) - 64 = xy\) suy ra \(2x - 4y = 72.\)

Nên ta có hệ phương trình \(\left\{ \begin{array}{l} - 3x + 8y =  - 84\\2x - 4y = 72\end{array} \right.\)

b) Ta có \( - 3x + 8y =  - 84\) suy ra \(x = \frac{{84 + 8y}}{3}\) thế vào phương trình thứ hai của hệ ta được \(2.\frac{{84 + 8y}}{3} - 4y = 72\) suy ra \(\frac{4}{3}y = 16\) nên \(y = 12.\)

Với \(y = 12\) nên \(x = \frac{{84 + 8.12}}{3} = 60.\)

Vậy số luống là 60, số cây trong 1 luống là 12 cây. 

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập 3 (SGK Kết nối tri thức với cuộc sống trang 12)

Hướng dẫn giải

Ta có \(x + 3y = - 1\) hay \(x = - 1 - 3y\) (2) , thế vào phương trình thứ hai của hệ ta được

\(\begin{array}{l}3\left( { - 1 - 3y} \right) + 9y = - 3\\0y - 3 = - 3\end{array}\)

\(0y = 0\) (luôn đúng) (1)

Ta thấy với mọi \(y \in \mathbb{R}\) thì đều thỏa mãn phương trình (1), ứng với mỗi y ta tìm được một x tương ứng được tính bởi (2) .

Vậy hệ phương trình có nghiệm \(\left( { - 1 - 3y;y} \right)\) với \(y \in \mathbb{R}\) tùy ý.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập 2 (SGK Kết nối tri thức với cuộc sống trang 12)

Hướng dẫn giải

Ta có \( - 2x + y = 3\) hay \(y = 3 + 2x\), thế vào phương trình thứ hai của hệ ta được

\(\begin{array}{l}4x - 2\left( {3 + 2x} \right) = - 4\\0x - 6 = - 4\end{array}\)

\(0x = 2\) (vô lí) (1)

Do không có giá trị nào của y thỏa mãn hệ thức (1) nên hệ phương trình đã cho vô nghiệm.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập 1 (SGK Kết nối tri thức với cuộc sống trang 12)

Hướng dẫn giải

a) Từ phương trình \(x - 3y = 2\) ta có \(x = 2 + 3y.\)

Thế vào phương trình thứ hai của hệ, ta được \( - 2\left( {2 + 3y} \right) + 5y = 1\) hay \( - 4 - y = 1\) suy ra \(y = - 5.\) Từ đó \(x = 2 + 3.\left( { - 5} \right) = - 13.\)

Vậy hệ phương trình có nghiệm là \(\left( { - 13; - 5} \right).\)

b) Từ phương trình \(4x + y = - 1\) ta có \(y = - 1 - 4x.\)

Thế vào phương trình thứ hai của hệ, ta được \(7x + 2\left( { - 1 - 4x} \right) = 1\) hay \( - x - 2 = 1\) suy ra \(x = - 3.\) Từ đó \(y = - 1 - 4.\left( { - 3} \right) = 11.\)

Vậy hệ phương trình có nghiệm là \(\left( { - 3;11} \right).\)

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Hoạt động 1 (SGK Kết nối tri thức với cuộc sống trang 11)

Hướng dẫn giải

1. Ta có \(x + y = 3\) suy ra \(y = 3 - x\) thay vào phương trình \(2x - 3y = 1\) ta được:

\(\begin{array}{l}2x - 3\left( {3 - x} \right) = 1\\2x - 9 + 3x = 1\\5x = 10\\x = 2\end{array}\)

2. Với \(x = 2\) suy ra \(y = 3 - 2 = 1.\) Vậy \(\left( {2;1} \right)\) là nghiệm của hệ phương trình đã cho. 

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)