Bài 11. Tính chất ba đường phân giác của tam giác

Khởi động (SGK Cánh Diều trang 108)

Hướng dẫn giải

TL:

3 nếp gấp đó là 3 đường phân giác của 3 góc của tam giác và cùng đi qua 1 điểm.

(Trả lời bởi S - Sakura Vietnam)
Thảo luận (1)

Hoạt động 1 (SGK Cánh Diều trang 108,109)

Hướng dẫn giải

Các đầu mút của đoạn thẳng AD có đặc điểm: đầu mút A là đỉnh của tam giác, đầu mút D thuộc cạnh BC.

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập 1 (SGK Cánh Diều trang 108,109)

Hướng dẫn giải

Xét hai tam giác ABD và ACD:

     AB = AC (tam giác ABC cân tại A);

     \(\widehat {BAD} = \widehat {CAD}\)(AD là phân giác của góc A);

     AD chung.

Vậy \(\Delta ABD = \Delta ACD\)(c.g.c).

Suy ra: BD = CD ( 2 cạnh tương ứng) hay D là trung điểm của cạnh BC. Vậy AD là đường trung tuyến của tam giác ABC.

(Trả lời bởi Kiều Sơn Tùng)
Thảo luận (2)

Hoạt động 2 (SGK Cánh Diều trang 109,110)

Hướng dẫn giải

Các đường phân giác AD, BE, CK có cùng đi qua một điểm là điểm I

(Trả lời bởi Hà Quang Minh)
Thảo luận (2)

Luyện tập 2 (SGK Cánh Diều trang 109,110)

Hướng dẫn giải

I là giao điểm của hai đường phân giác góc B và góc C.

Vậy I cũng là giao điểm của đường phân giác góc A với góc B và góc C.

Hay AI là phân giác của góc A. Vậy \(x = 30^\circ \).

(Trả lời bởi Hà Quang Minh)
Thảo luận (1)

Luyện tập 3 (SGK Cánh Diều trang 109,110)

Hướng dẫn giải

Gọi D là giao điểm của IC và MNE là giao điểm của IA và PNF là giao điểm của IB và PM.

Ta có: Trong tam giác ABC, ba đường phân giác cùng đi qua một điểm và điểm đó cách đều ba cạnh của tam giác hay IM = IN = IP.

Xét tam giác vuông INC và tam giác vuông IMC:

     IC chung;

     IN = IM.

Vậy \(\Delta INC = \Delta IMC\)(cạnh huyền – cạnh góc vuông) nên \(\widehat {MIC} = \widehat {NIC}\)( 2 góc tương ứng).

Tương tự: \(\Delta IPA = \Delta INA\)(cạnh huyền – cạnh góc vuông) nên \(\widehat {PIA} = \widehat {NIA}\)( 2 góc tương ứng).

     \(\Delta IPB = \Delta IMB\)(cạnh huyền – cạnh góc vuông) nên \(\widehat {PIB} = \widehat {MIB}\)( 2 góc tương ứng).

Xét hai tam giác IDN và IDM có:

     ID chung;

     \(\widehat {NID} = \widehat {MID}\);

     IN = IM.

Vậy \(\Delta IDN = \Delta IDM\)(c.g.c)

\(\Rightarrow DN = DM\) ( 2 cạnh tương ứng);

 \(\widehat {IDN} = \widehat {IDM}\) ( 2 góc tương ứng)

Mà  \(\widehat {IDN} + \widehat {IDM}=180^0\) ( 2 góc kề bù)

\(\Rightarrow \widehat {IDN} = \widehat {IDM}= 180^0:2=90^0\).

Suy ra: IC là đường trung trực của cạnh MN.

Tương tự ta có:

IA là đường trung trực của cạnh PN; IB là đường trung trực của cạnh PM.

(Trả lời bởi Kiều Sơn Tùng)
Thảo luận (1)

Bài 1 (SGK Cánh Diều trang 111)

Hướng dẫn giải

a) Trong tam giác ABC, ba đường phân giác cùng đi qua một điểm và điểm đó cách đều ba cạnh của tam giác hay IM = IN = IP.

Vậy các tam giác IMN, INP, IPM có là tam giác cân tại I.

b)

Xét tam giác vuông INC và tam giác vuông IMC:

     IC chung;

     IN = IM.

Vậy \(\Delta INC = \Delta IMC\)(cạnh huyền – cạnh góc vuông). Suy ra: CN = CM ( 2 cạnh tương ứng).

Vậy tam giác CMN có là tam giác cân.

Tương tự, ta có: AP = ANBP = BM.

Vậy các tam giác ANP, BPM, CMN có là tam giác cân.

(Trả lời bởi Kiều Sơn Tùng)
Thảo luận (1)

Bài 2 (SGK Cánh Diều trang 111)

Hướng dẫn giải

a) I là giao điểm của ba đường phân giác tại ba góc A, B, C nên:

     \(\widehat {IAB} = \widehat {IAC};\widehat {IBA} = \widehat {IBC};\widehat {ICB} = \widehat {ICA}\).

Tổng ba góc trong một tam giác bằng 180° nên:

     \(\begin{array}{l}\widehat {BAC} + \widehat {ACB} + \widehat {CBA} = 180^\circ \\\widehat {IAB} + \widehat {IAC} + \widehat {IBA} + \widehat {IBC} + \widehat {ICB} + \widehat {ICA} = 180^\circ \\2\widehat {IAB} + 2\widehat {IBC} + 2\widehat {ICA} = 180^\circ \end{array}\)

Vậy \(\widehat {IAB} + \widehat {IBC} + \widehat {ICA} = 90^\circ \).

b) Tổng ba góc trong một tam giác bằng 180°. Xét tam giác BIC:

\(\begin{array}{l}\widehat {BIC} + \widehat {IBC} + \widehat {ICB} = 180^\circ \\\widehat {BIC} = 180^\circ  - (\widehat {IBC} + \widehat {ICB})\end{array}\).

Mà  \(\widehat {IAB} + \widehat {IBC} + \widehat {ICA} = 90^\circ \)→ \(\widehat {IBC} + \widehat {ICA} = 90^\circ  - \widehat {IAB}\).

Vậy: \(\begin{array}{l}\widehat {BIC} = 180^\circ  - (\widehat {IBC} + \widehat {ICB})\\\widehat {BIC} = 180^\circ  - (90^\circ  - \widehat {IAB})\\\widehat {BIC} = 90^\circ  + \widehat {IAB}\end{array}\)

Mà \(\widehat {IAB} = \dfrac{1}{2}\widehat {BAC}\)(IA là phân giác của góc BAC).

Vậy \(\widehat {BIC} = 90^\circ  + \widehat {IAB} = 90^\circ  + \dfrac{1}{2}\widehat {BAC}\). 

(Trả lời bởi Kiều Sơn Tùng)
Thảo luận (1)

Bài 3 (SGK Cánh Diều trang 111)

Hướng dẫn giải

a) Ta có: AB < AC nên \(\widehat {ABC} > \widehat {ACB}\)(góc ABC đối diện với cạnh AC; góc ACB đối diện với cạnh AB).

Mà BI và CI là hai đường phân giác của góc ABC và góc ACB nên: \(\widehat {CBI} > \widehat {ACI}\)

(Vì: \(\widehat {CBI} = \dfrac{1}{2}\widehat {ABC};\widehat {ACI} = \dfrac{1}{2}\widehat {ACB}\)).

b) Ta có: \(\widehat {ACI} = \widehat {BCI}\)

Mà \(\widehat {CBI} > \widehat {ACI}\) ( câu a) 

Do đó \(\widehat {CBI} > \widehat {BCI}\).

Mà IC đối diện với góc CBIIB đối diện với góc BCI.

Vậy IC > IB (cạnh đối diện với góc lớn hơn thì có số đo độ dài lớn hơn).

(Trả lời bởi Kiều Sơn Tùng)
Thảo luận (1)