Bài 1: Nguyên hàm

Bài tập 1 (SGK Cánh Diều - Tập 2 - Trang 7)

Hướng dẫn giải

\(F'(x) = 3{x^2}\)

Vậy F(x) là nguyên hàm của hàm số \(f(x) = 3{x^2}\)

Chọn A

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 2 (SGK Cánh Diều - Tập 2 - Trang 7)

Hướng dẫn giải

a) \(\int {f(x)} dx = \int {(3{x^2} + x} )dx = {x^3} + \frac{{{x^2}}}{2} + C\)

b) \(\int {f(x)} dx = \int {(9{x^2} - 2x + 7} )dx = 3{x^3} - {x^2} + 7x + C\)

c)\(\int {f(x)} dx = \int {(4x - 3)({x^2} + 3)dx} \)

\(= \int {(4{x^3} - 3{x^2} + 12x - 9} ) dx\)

\(= {x^4} - {x^3} + 6{x^2} - 9x + C\)

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 3 (SGK Cánh Diều - Tập 2 - Trang 7)

Hướng dẫn giải

\(\int {f(x)} dx = \int {\left( {6{x^5} + 2x - 3} \right)} dx = {x^6} + {x^2} - 3x + C\)

F(-1) = -5 <=> \({( - 1)^6} + {( - 1)^2} - 3.( - 1) + C = - 5 \Rightarrow C = - 10\)

Vậy F(x) = \({x^6} + {x^2} - 3x - 10\)

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 4 (SGK Cánh Diều - Tập 2 - Trang 8)

Hướng dẫn giải

a) \(\int {h'(t)} dt = \int {\left( {1,5t + 5} \right)} dt = 0,75{t^2} + 5t + C\)

Vậy công thức chỉ chiều cao của cây sau t năm là: \(0,75{t^2} + 5t + C\)

b) Đặt \(H(t) = 0,75{t^2} + 5t + C\)

Tại t = 0 thì H(0) = 12 suy ra C = 12

Khi được bán, tức là sau 6 năm thì cây cao: \(H(6) = 0,{75.6^2} + 5.6 + 12 = 69cm\)

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 5 (SGK Cánh Diều - Tập 2 - Trang 8)

Hướng dẫn giải

a) \(\int {h'(t)} dt = \int {\left( {1,5t + 5} \right)} dt = 0,75{t^2} + 5t + C\)

Vậy công thức chỉ chiều cao của cây sau t năm là: \(0,75{t^2} + 5t + C\)

b) Đặt \(H(t) = 0,75{t^2} + 5t + C\)

Tại t = 0 thì H(0) = 12 suy ra C = 12

Khi được bán, tức là sau 6 năm thì cây cao: \(H(6) = 0,{75.6^2} + 5.6 + 12 = 69cm\)

image.png
Từ bảng biển thiên ta thấy, B(t) max tại t = 15

Vậy số lượng khách tham dự lớn nhất là: 28220 khách

d) \(B''(t) = 60{t^2} - 600t + 1000 = 0 \Leftrightarrow \left[ \begin{array}{l}t = \frac{{15 - 5\sqrt 3 }}{3}\\t = \frac{{15 + 5\sqrt 3 }}{3}\end{array} \right.\)

Bảng biến thiên:

image.png

Từ bảng biển thiên ta thấy, B’(t) max tại t = 15

Vậy tại thời điểm t = 15 giờ thì tốc độ thay đổi lượng khách tham gia dự lễ hội là lớn nhất

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 6 (SGK Cánh Diều - Tập 2 - Trang 8)

Hướng dẫn giải

\(\int {m(t)} dt = \int {\left( {800 - 2t} \right)} dt = 800t - {t^2} + C\)

Tại t = 0 thì \(M(t) = 0 \Leftrightarrow C = 0\)

Vậy \(M(t) = 800t - {t^2}\)

Số ngày công tính đến khi hoàn thành dự án là: \(M(400) = 800.400 - {400^2} = 160000\)(ngày)

Chi phí nhân công lao động của công trình đó là: 160000.400000 = 64 tỷ VND

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)