Hai bạn nữ Hoa, Thảo và hai bạn nam Dũng, Huy được xếp ngồi ngẫu nhiên vào bốn ghế đặt theo hàng dọc. Tính xác suất của mỗi biến cố:
a) “Bạn Thảo ngồi ghế đầu tiên”;
b) “Bạn Thảo ngồi ghế đầu tiên và bạn Huy ngồi ghế cuối cùng”.
Hai bạn nữ Hoa, Thảo và hai bạn nam Dũng, Huy được xếp ngồi ngẫu nhiên vào bốn ghế đặt theo hàng dọc. Tính xác suất của mỗi biến cố:
a) “Bạn Thảo ngồi ghế đầu tiên”;
b) “Bạn Thảo ngồi ghế đầu tiên và bạn Huy ngồi ghế cuối cùng”.
Có 10 bông hoa màu trắng, 10 bông hoa màu vàng và 10 bông hoa màu đỏ. Người ta chọn ra 4 bông hoa từ các bông hoa trên. Tính xác suất của biến cố “Bốn bông hoa chọn ra có cả ba màu”.
Thảo luận (1)Hướng dẫn giải+) Mỗi lần lấy ngẫu nhiên ra 4 bông hoa từ 30 bông hoa ta có một tổ hợp chập 4 của 30. Do đó số phần tử của không gian mẫu là: \(n\left( \Omega \right) = C_{30}^4\) (phần tử)
+) Gọi A là biến cố “ bốn bông hoa chọn ra có cả ba màu”
+) Để chọn ra bốn bông hoa có đủ 3 màu ta chia ra làm ba trường hợp:
TH1: 2 bông trắng, 1 bông vàng, 1 bông đỏ: \(C_{10}^2.10.10\) (cách chọn)
TH2: 1 bông trắng, 2 bông vàng, 1 bông đỏ: \(10.C_{10}^2.10\) (cách chọn)
TH3: 1 bông trắng, 1 bông vàng, 2 bông đỏ: \(10.10.C_{10}^2\) (cách chọn)
+) Áp dụng quy tắc cộng, ta có \(n\left( A \right) = 13500\) ( cách chọn)
+) Xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{100}}{{203}}\)
(Trả lời bởi Hà Quang Minh)