\(x\left(x-5\right)=8-2\left(3x+1\right)\)
\(x^2-5x=8-6x-2\)
\(x^2-5x-8+6x+2=0\)
\(x^2+x-6=0\)
\(\left(x-2\right)\left(x+3\right)=0\)
\(\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
\(2x^2\left(x^2-2\right)+2=3\left(x^2+2\right)\)
\(2x^4-4x^2+2=3x^2+6\)
\(2x^4-4x^2+2-3x^2-6=0\)
\(2x^4-7x^2-4=0\)
\(2x^4+x^2-8x^2-4=0\)
\(x^2\left(2x^2-1\right)-4\left(2x^2-1\right)=0\)
\(\left(x-4\right)\left(2x^2-1\right)=0\)
\(\left[{}\begin{matrix}x=4\\2x^2=1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=4\\x^2=\frac{1}{2}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=4\\x=\pm\sqrt{\frac{1}{2}}\end{matrix}\right.\)