Với giá trị \(x_0\) bất kì:
- Nếu \(-1< x_0< 1\Rightarrow-1< -x_0< 1\)
\(\Rightarrow f\left(-x_0\right)=0=-0=-f\left(x_0\right)\)
- Nếu \(x_0\le-1\Rightarrow f\left(x_0\right)=x_0^3+1\)
\(x_0\le-1\Rightarrow-x_0\ge1\Rightarrow f\left(-x_0\right)=\left(-x_0\right)^3-1=-\left(x^3_0+1\right)=-f\left(x_0\right)\)
- Nếu \(x_0\ge1\Rightarrow-x_0\le-1\)
\(f\left(x_0\right)=x_0^3-1\)
\(f\left(-x_0\right)=\left(-x_0\right)^3+1=-\left(x_0^3-1\right)=-f\left(x_0\right)\)
Vậy \(f\left(-x_0\right)=-f\left(x_0\right)\) \(\forall x_0\in R\Rightarrow f\left(x\right)\) là hàm lẻ