1) ta có : tập xác định : \(D=R/\left\{k\pi\backslash k\in Z\right\}\) \(\Rightarrow x\in D\rightarrow-x\in D\forall x\)
đặc \(f\left(x\right)=cot2x-sin5x\)
\(\Rightarrow f\left(-x\right)=cot\left(-2x\right)-sin\left(-5x\right)=-cot2x+sin5x=-f\left(x\right)\)
vậy hàm số này là hàm lẽ
2) ta có : tập xác định : \(D=\left[-\infty;2\right]\cup\left[2;+\infty\right]\) \(\Rightarrow x\in D\rightarrow-x\in D\forall x\)
đặc \(f\left(x\right)=cos\sqrt{x^2-4}\)
\(\Rightarrow f\left(-x\right)=cos\sqrt{\left(-x\right)^2-4}=\sqrt{x^2-4}=f\left(x\right)\)
vậy hàm số này là hàm chẳn
3) ta có : tập xác định : \(D=R/\left\{\dfrac{\pi}{2}+k2\pi\backslash k\in Z\right\}\) \(\Rightarrow x\in D\rightarrow-x\in D\forall x\)
đặc \(f\left(x\right)=\left|tanx-1\right|\)
\(\Rightarrow f\left(-x\right)=\left|tan\left(-x\right)-1\right|=\left|-tanx-1\right|\ne f\left(x\right);f\left(-x\right)\)
vậy hàm số này là hàm không chẳn không lẽ
4) ta có : tập xác định : \(D=R/\left\{\dfrac{\pi}{2}+k2\pi\backslash k\in Z\right\}\) \(\Rightarrow x\in D\rightarrow-x\in D\forall x\)
đặc \(f\left(x\right)=\dfrac{tanx}{cosx+2}\)
\(\Rightarrow f\left(-x\right)=\dfrac{tan\left(-x\right)}{cos\left(-x\right)+2}=\dfrac{-tanx}{cosx+2}=-f\left(x\right)\)
vậy hàm số này là hàm lẽ
5) ta có : tập xác định : \(D=R/\left\{\pi+k2\pi\backslash k\in Z\right\}\) \(\Rightarrow x\in D\rightarrow-x\in D\forall x\)
đặc \(f\left(x\right)=\dfrac{sinx}{1+cosx}\)
\(\Rightarrow f\left(-x\right)=\dfrac{sin\left(-x\right)}{1+cos\left(-x\right)}=\dfrac{-sinx}{1+cosx}=-f\left(x\right)\)
vậy hàm số này là hàm lẽ