Xét dấu f(x) biết:
1) f(x) = \(\left(3x^2-x-2\right)\left(4x^2-7x-2\right)\)
2) f(x) = \(\frac{2x^2-x-15}{3x-2}\)
3) f(x) = \(\frac{5}{2x-1}+\frac{3}{5-2x}\)
4) f(x) = \(\left(5-2x\right)^2\left(x+2\right)\)
5) f(x) = \(\frac{\left(x-1\right)^2\left(3-2x\right)}{x^2+x-6}\)
Câu 1 : Xét dấu các biểu thức sau :
a , f(x) = \(\left(2x-1\right)\left(x+3\right)\)
b , f(x)= \(\left(-3x-3\right)\left(x+2\right)\left(x+3\right)\)
c , f(x) = \(\frac{-4}{3x+1}-\frac{3}{2-x}\)
d , f (x) = \(4x^2-1\)
e , f(x)= \(\left(-2x+3\right)\left(x-2\right)\left(x+4\right)\)
f , f(x) = \(\frac{2x+1}{\left(x-1\right)\left(x+2\right)}\)
g , f (x) = \(\frac{3}{2x-1}-\frac{1}{x-2}\)
h , f ( x) = \(\left(4x-1\right)\left(x+2\right)\left(3x-5\right)\left(-2x+7\right)\)
Xét dấu f(x) biết:
1) f(x) =\(\left(5-2x\right)^2\left(x+2\right)\)
2) f(x) = \(\frac{\left(x-1\right)^2\left(3-2x\right)}{x^2+x-6}\)
Câu 2 : Xét dấu các biểu thức sau :
A = \(\frac{4-3x}{2x+1}\)
B = \(1-\frac{2-x}{3x-2}\)
C = \(x\left(x-2\right)^2\left(3-x\right)\)
D = \(\frac{x\left(x-3\right)^2}{\left(x-5\right)\left(1-x\right)}\)
E = \(-x^2+x+6\)
F = \(2x^2-\left(2+\sqrt{3}\right)x+\sqrt{3}\)
G = \(\left(3x-1\right)\left(x+2\right)\)
H = \(\frac{2-3x}{5x-1}\)
K = \(\left(-x+1\right)\left(x+2\right)\left(3x+1\right)\)
L = \(2-\frac{2+x}{3x-2}\)
M = \(9x^2-1\)
N = \(-x^3+7x-6\)
O = \(x^3+x^2-5x+3\)
P = \(x^2-x-2\sqrt{2}\)
Q = \(\frac{1}{3-x}-\frac{1}{3+x}\)
R = \(\frac{x^2-6x+8}{x^2+8x-9}\)
S= \(\frac{x^2+4x+4}{x^4-2x^2}\)
T = \(\frac{\left|x+1\right|-1}{x^2+x+1}\)
lập bảng xét dấu của các biểu thức : a) \(\frac{4-3x}{2x+1}\) b) 1- \(\frac{2-x}{3x-2}\) c) x(x-2)2(3-x) d) \(\frac{x\left(x-3\right)^2}{\left(x-5\right)\left(1-x\right)}\)
Giải các bất phương trình, hệ phương trình
a) \(\dfrac{x^2-4x+3}{2x-3}\ge x-1\)
b) \(3x^2-\left|4x^2+x-5\right|>3\)
c)\(4x-\left|2x^2-8x-15\right|\le-1\)
d)\(x+3-\sqrt{21-4x-x^2}\ge0\)
e)\(\left\{{}\begin{matrix}x\left(x+5\right)< 4x+2\\\left(2x-1\right)\left(x+3\right)\ge4x\end{matrix}\right.\)
f)\(\dfrac{1}{x^2-5x+4}\le\dfrac{1}{x^2-7x+10}\)
câu 1: lập bảng xét dấu để tìm nghiệm của bất pt sau:
a/\(4x^2-5x+1\ge0\)
b/\(3x^2-4x+1\le0\)
câu 2:
a/\(|x^2-3x+2|\le8-2x\)
b/\(x^2-5x+\sqrt{x\left(5-x\right)}+2< 0\)
c/\(\sqrt{8+2x-x^2}>6-3x\)
d/\(2\sqrt{1-\frac{2}{x}}+\sqrt{2x-\frac{8}{x}}\ge x\)
e/\(|x^2-4x+3|>2x-3\)
f/\(\sqrt{-x^2+6x-5}\le8-2x\)
g/\(x^2-8x-\sqrt{x\left(x-8\right)}< 6\)
h/\(3\sqrt{1-\frac{3}{x}}+\sqrt{3x-\frac{27}{x}}\ge x\)
lập bảng xét dấu của các biểu thức :
a) \(\frac{4-3x}{2x+1}\)
b) 1- \(\frac{2-x}{3x-2}\)
c) x(x-2)2(3-x)
d) \(\frac{x\left(x-3\right)^2}{\left(x-5\right)\left(1-x\right)}\)
Tìm Max, Min của
a.\(f\left(x\right)=\sqrt{x+1}+\sqrt{9-x}\)
b.\(f\left(x\right)=\sqrt{x}+\sqrt{2-x}+\sqrt{2x-x^2}\)
c.\(f\left(x\right)=x+\sqrt{8-x^2}+x\sqrt{8-x^2}\)
d.\(f\left(x\right)=\sqrt{x+2}+\sqrt{2-x}+\sqrt{4-x^2}\)