tìm mệnh đề phủ định và xét tính đúng sai của mệnh đề
∀ϵR: x2 -3x+5 ≠0
Dùng kí hiệu \(\forall\) và \(\exists\) để viết mệnh đề sau rồi lập mệnh đề phủ định và xét tính đúng sai của các mệnh đề đó :
a) Mọi số thực cộng với số đối của nó đều bằng 0
b) Mọi số thực khác 0 nhân với nghịch đảo của nó đều bằng 1
c) Có một số thực bằng số đối của nó
Lập mênh đề phủ định của mệnh đề sau. Mệnh đề phủ định đó đúng hay sai ?
A"∃x ∈ R, x2 - 6x + 9 bé hơn hoặc bằng 0"
Cho A, B là hai tập hợp và mệnh đề P : "A là một tập hợp con của B"
a) Viết P dưới dạng một mệnh đề kéo theo
b) Lập mệnh đề đảo của P
c) Lập mệnh đề phủ định của P và viết nó dưới dạng một mệnh đề kéo theo
1) Cho mệnh đề A = “∃n ∈ N : 3n + 1 là số lẻ”, mệnh đề phủ định của mệnh đề A và tính đúng, sai của mệnh đề phủ định? Giải thích?
2) Cho tập hợp A = {1, 2, 3, 4, x, y}. Xét các mệnh đề sau: (I): “3 ∈ A”, (II): “{3; 4} ∈ A”, (III): “{a, 3, b} ∈ A”. Mệnh đề nào đúng?
3) Cho hai tập hợp A = {0; 2} và B = {0; 1; 2; 3; 4}. Có bao nhiêu tập hợp X thỏa mãn \(A\cup X=B\)
\(a+1+\frac{1}{a+1}\le2\)Nêu mệnh đề phủ định của các mệnh đề sau và cho biết tính đúng sai của mệnh đề ohur định đó:
a) ∀x ∈ R, x3 - x2 + 1 > 0
b) “Tồn tại số thực a sao cho \(a+1+\frac{1}{a+1}\le2\)“
Xét tính đúng sai của mệnh đề sau và nêu mệnh đề phủ định của nó
∀x ∈ R, \(x^4-x^2+2x+2\)
Thế nào là mệnh đề đảo của mệnh đề \(A\Rightarrow B\) ? Nếu \(A\Rightarrow B\) là mệnh đề đúng thì mệnh đề đảo của nó có đúng không ? Cho ví dụ minh họa ?
Cho tứ giác ABCD. Xét tính đúng sai của mệnh đề \(P\Rightarrow Q\) với :
a. P : "ABCD là một hình vuông"
Q : " ABCD là một hình bình hành"
b. P : "ABCD là một hình thoi"
Q : "ABCD là một hình chữ nhật"