Chứng minh đẳng thức:
\(\dfrac{a^3-4a^2-a+4}{a^3-7a^2+14a-8}=\dfrac{a+1}{a-2}\)
\(\dfrac{x^2y^2+1+\left(x^2-y\right)\left(1-y\right)}{x^2y^2+1+\left(x^2+y\right)\left(1+y\right)}=\dfrac{y^2-y+1}{y^2+y+1}\)
Chứng minh đẳng thức:
a - [\(\dfrac{\left(16-a\right)a}{a^2-4}\) + \(\dfrac{3+2a}{2-a}\) - \(\dfrac{2-3a}{a+2}\)] : \(\dfrac{a-1}{a^3+4a^2+4a}\) = \(\dfrac{3a}{1-a}\)
Rút gọn các phân thức sau:
a, \(A=\dfrac{35.\left(27^8+2.9^{11}\right)}{15.\left(81^6-12.3^{19}\right)}\)
b, \(B=\dfrac{\left(1^4+\dfrac{1}{4}\right)\left(3^4+\dfrac{1}{4}\right)...\left(11^4+\dfrac{1}{4}\right)}{\left(2^4+\dfrac{1}{4}\right)\left(4^4+\dfrac{1}{4}\right)...\left(12^4+\dfrac{1}{4}\right)}\)
rút gọn
a) \(\dfrac{4-4x^2-9y^2-12xy}{2x+2+3y}\)
b) \(\dfrac{\left(2a+3\right)^3-\left(2a-3\right)^3}{\left(3a+4\right)^2+3a^2-24a-7}\)
c) M=\(\dfrac{\left|x-1\right|+\left|x\right|+x}{3x^2-4x-1}\) với x<0
1. Tìm giá trị của x để các phân thức sau = 0 .
a) \(\dfrac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}\)
b)\(\dfrac{x^4-5x^2+4}{x^4-10x^2+9}\)
2. Rút gọn các phân thức :
a) \(\dfrac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{ab^2-ac^2-b^3+bc^2}\)
b) \(\dfrac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}\)
c) \(\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+x\right)^2+\left(z-x\right)^2}\)
d)\(\dfrac{x^3+y^3+z^3-3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
\(a,\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\) \(d,\dfrac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)}\)
\(b,\dfrac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\) \(e,\dfrac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{ab^2-ac^2-b^3+bc^2}\)
\(c,\dfrac{x^3+y^3+z^3-3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
Bài 1:
Cho phân thức: \(M=\dfrac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2+\left(ab+bc+ca\right)^2}{\left(a+b+c\right)^2-\left(ab+bc+ca\right)}\)
a, tìm các giá trị của a, b, c để phân thức được xác định (tức là để mẫu khác 0)
b, Rút gọn M
Bài 2: Rút gọn:
\(A=\dfrac{\left(b-c\right)^3+\left(c-a\right)^3+\left(a-b\right)^3}{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}\)
Bài 3: CMR: với mọi số nguyên n thì phân số \(\dfrac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản
Bài 4: CMR: \(1+x+x^2+x^3+...+x^{31}=\left(1+x\right)\left(1+x^2\right)\left(1+x^4\right)\left(1+x^8\right)\left(1+x^{16}\right)\)
Mn giúp mik vs ạ :((
\(\dfrac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(c^2-b^2\right)}\)
Rút gọn phân thức sau
Rút gọn các phân thức :
\(A=\dfrac{x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)}{xy^2-xz^2-y^3+yz^2}\)
\(B=\dfrac{a^3-b^3+c^3+3abc}{\left(a+b\right)^2+\left(b-c\right)^2+\left(c+a\right)^2}\)
\(C=\dfrac{a^3b-ab^3+b^3c-bc^3+c^3a-ca^3}{a^2b-ab^2+b^2c-bc^2+c^2a-ca^2}\)