\(x+5\) ⋮ \(x-1\)
\(\Rightarrow x-1+6\) ⋮ \(x-1\)
\(\Rightarrow4\) ⋮ \(x-1\)
\(\Rightarrow x-1\inƯ\left(6\right)\)
Mà: \(Ư\left(6\right)=\left\{1;-1;-2;2;3;-3;6;-6\right\}\)
Ta có bảng:
\(x-1\) | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
\(x\) | 2 | 0 | 3 | -1 | 4 | -2 | 7 | -5 |
Vậy \(x+5\) ⋮ \(x-1\) khi
\(x\in\left\{2;0;3;-1;4;-2;7;-5\right\}\)
\(\dfrac{\text{x - 5}}{\text{x - 1}}=\dfrac{\text{x + 1 + 4}}{\text{x - 1}}=\text{1 +}\dfrac{4}{\text{x + 1}}\)
để \(\text{x + 5 ⋮ x + 1}\) thì \(\text{4 ⋮ x + 1}\)
\(\rightarrow\) \(\text{x + 1 ∈ Ư(4)}\) \(=\left\{0;\pm1;\pm2;\pm3\right\}\)
\(\rightarrow\) \(\text{x ∈}\left\{0;1;-1;2;-2;3;-3\right\}\)