Vì \(x^2\ge0\forall x\)
\(\left(y-\dfrac{1}{10}\right)^4\ge0\forall y\)
\(\Rightarrow x^2+\left(y-\dfrac{1}{10}\right)^4\ge0\forall x,y\)
Mà \(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=0\\\left(y-\dfrac{1}{10}\right)^4=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\y-\dfrac{1}{10}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)
Vậy \(x=0;y=\dfrac{1}{10}\)