\(\frac{x}{2}=\frac{y}{4};x^4\cdot y^4=16\) . Tìm x,y
Đặt \(\frac{x}{2}=\frac{y}{4}=z\) ta có: x = 2z; y = 4z
Thay vào biểu thức \(x^4\cdot y^4=16\) ta được:
\(\left(2\cdot z\right)^4\cdot\left(4\cdot z\right)^4=16\)
\(2^4\cdot z^4\cdot4^4\cdot z^4=16\)
\(\left(2^4\cdot4^4\right)\cdot\left(z^4\cdot z^4\right)=16\)
\(4096\cdot z^8=16\)
\(z^8=\frac{16}{4096}=\frac{1}{256}=\left(\frac{1}{16}\right)^8\)
\(\Rightarrow z=\frac{1}{16}\)
\(\Rightarrow x=2\cdot z=2\cdot\frac{1}{16}=\frac{1}{8}\)
\(\Rightarrow y=4\cdot z=4\cdot\frac{1}{16}=\frac{1}{4}\)
Vậy \(x=\frac{1}{8};y=\frac{1}{4}\)