\(\left(x+1\right)\left(x^2-x+1\right)-x\left(x-3\right)\left(x+3\right)=8\)
\(\Leftrightarrow x^3-1-x\left(x^2-9\right)=8\)
\(\Leftrightarrow x^3-1-x^3-9x=8\)
\(\Leftrightarrow-9x=9\)
\(\Leftrightarrow x=-1\)
vậy \(x=-1\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(\left(x+1\right)\left(x^2-x+1\right)-x\left(x-3\right)\left(x+3\right)=8\)
\(\Leftrightarrow x^3-1-x\left(x^2-9\right)=8\)
\(\Leftrightarrow x^3-1-x^3-9x=8\)
\(\Leftrightarrow-9x=9\)
\(\Leftrightarrow x=-1\)
vậy \(x=-1\)
1)\(\sqrt{4+2x-x^2}=x-2\)
2)\(\sqrt{25-x^2}=x-1\)
3)(x+4).\(\sqrt{10-x^2}=x^2+2x-8\)
4)(x-3).\(\sqrt{x^2-3x+2}=x^2-8x+15\)
5)\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x-6\sqrt{x-1}+8}=1\)
6)\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
7)\(^{x^2+x-2\sqrt{x+1}+2=0}\)
8)x-4\(\sqrt{2x+4}-2\sqrt{1-x}+10=0\)
a)x+1/8=16/2.(x+1)
b)x+3/x-5=4/5
Tìm tập xác định của hàm số :
f. y=\(\dfrac{x}{\sqrt{x+1}-\sqrt{7-2x}}\)
g.y=\(\dfrac{2}{\sqrt{x+1}}+\dfrac{\sqrt{x+2}}{x^2-4}\)
h.y=\(\dfrac{3}{|x+1|-|x-2|}\)
Tìm tập xác định của hàm số :
a. y=\(\dfrac{1}{x^2-2x}+\sqrt{x^2-1}\)
b.y=\(\sqrt{x+1}+\sqrt{5-3x}\)
c.y=\(\sqrt{5x+3}+\dfrac{2x}{\sqrt{3-x}}\)
d.y=\(\dfrac{3x}{\sqrt{4-x^2}}+\sqrt{1+x}\)
e.y=\(\dfrac{5-2x}{(2-3x)\sqrt{1-6x}}\)
tìm tập xác định của hàm số y = \(\sqrt{x+3+2\sqrt{x+2}}+\sqrt{2-x^2+2\sqrt{1-x^2}}\)
Bài 1. Giải các bất phương trình:
a) \(\dfrac{2x-1}{x-2}< \dfrac{1}{4x+2}\)
b) \(\left|x^2+5x+4\right|>x^2+3x-4\)
c) \(\dfrac{x+2}{3}-x+1>x+3\)
d) \(\dfrac{3x+5}{2}-1\le\dfrac{x+2}{3}+x\)
Bài 2. Xét dấu các biểu thức:
a) \(f\left(x\right)=\left(x-3\right)\left(2x+3\right)\)
b) \(g\left(x\right)=\left(-2x+3\right)\left(x-2\right)\left(x+4\right)\)
c) \(h\left(x\right)=\dfrac{\left(x+2\right)\left(4-x\right)}{3-2x}\)
d) \(k\left(x\right)=\dfrac{2}{3-x}-\dfrac{1}{3+x}\)
a) \(\left|x+3\right|+\left|x+1\right|-x+4\le0\)
b)\(\left|x^2-x-3\right|\ge2x+3\)
c) \(\left|3x-1\right|< x^2-x+2\)
Tìm tập xác định của hàm số:
y = \(\sqrt{x+1}\) + \(\sqrt{x+2}\) +\(\sqrt{x+3}\)
Trong các hàm số sau có bao nhiêu hàm số có đồ thị hối xứng qua trục Oy
y=\(\dfrac{25x^2+1}{\left|3-x\right|+\left|3+x\right|}\)
y=|1+4x|+1-4x|
y=\(\sqrt[4]{5+x}+\sqrt[4]{5-x}\)
y=\(\sqrt[3]{8-x}-\sqrt[3]{8+x}\)