\(\dfrac{x^2-8}{3}=\dfrac{x^2}{6}\)
\(\Leftrightarrow\dfrac{6\left(x^2-8\right)}{18}=\dfrac{3x^2}{18}\)
\(\Leftrightarrow6x^2-48=3x^2\)
\(\Leftrightarrow3x^2=48\)
\(\Leftrightarrow x^2=16\)
\(\Leftrightarrow x=\pm4\)
\(\dfrac{x^2-8}{3}\)=\(\dfrac{x^2}{6}\)
<=> \(\dfrac{2\left(x^2-8\right)}{6}\)=\(\dfrac{x^2}{6}\)
=> \(2x^2-16\)=\(x^2\)
<=> \(2x^2\)- \(x^2\)=16
<=>\(x^2\)=16
<=>\(x^2\)=(\(\pm\)4)\(^2\)
<=> x=\(\pm\)4