cho x y z thỏa mãn x+y+z+căn xyz=4 cm căn x(4-y)(4-z) + căn y(4-x)(4-z) +căn z(4-x)(4-y) - căn xyz= 8
Cho x,y,z là các số thực không âm thỏa mãn x+y+z=3 . Tìm GTNN và GTLN của biểu thức N = căn(x+y) + căn(y+z) + căn(x+z)
tìm max:
a, \(A=3\sqrt{2x-1}+x\sqrt{5-4x^2}\) với 1/2<=x<= căn 5/2
b, \(B=\frac{xyz\left(x+y+z+\sqrt{x^2+y^2+z^2}\right)}{\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)};x,y,z>0\)
Cho 3 số dương x,y,z thỏa mãn: xy + yz + xz = 671
\(CM:\dfrac{x}{x^2-yz+2013}+\dfrac{y}{y^2-xz+2013}+\dfrac{z}{z^2-xy+2013}\ge\dfrac{1}{x+y+z}\)
Cho x,y,z>0 . Tìm Max A = \(\dfrac{\sqrt{yz}}{x+2\sqrt{yz}}+\dfrac{\sqrt{xy}}{z+2\sqrt{xy}}+\dfrac{\sqrt{xz}}{y+2\sqrt{xz}}\)
cho x, y, z>0 và xy.√xy + yz.√yz + xz.√xz = 1
tìm Min A= x6/ (x3+y3) + y3/(y3+z3 )+ z6/(z3+x3)
tìm x, y .z biết : x^2 + y^ 2 + z^2 = yz+xz+xy và x^2012 + y^2012 + z^2012= 3^2013
Câu 1:
A=\(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
Rút gọn A
Câu 2:
A=\(\dfrac{3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}\) Biết tử số có 2016 dấu căn, mẫu số có 2015 dấu căn. Chứng minh A<\(\dfrac{1}{4}\)
Câu 3:Cho 3 số dương x, y, z thỏa măn điều kiện: xy+yz+xz=1
Tính A=\(x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\dfrac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
Mọi người làm nhanh nha, mai mình kt 1 tiết rồi
Giải hệ phương trình :\(\left\{{}\begin{matrix}x+xy+y=1\\y+yz+z=4\\z+xz+x=9\end{matrix}\right.\) trong đó x,y,z>0