\(d=\left(1+\dfrac{1}{3}\right)\left(1+\dfrac{1}{8}\right)\left(1+\dfrac{1}{15}\right)....\left(1+\dfrac{1}{n^2+2n}\right)\)
\(d=\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}...........\dfrac{n^2+2n+1}{n^2+2n}\)
\(d=\dfrac{2^2}{3}.\dfrac{3^2}{8}.\dfrac{4^2}{15}......\dfrac{\left(n+1\right)^2}{n\left(n+2\right)}\)
\(d=\dfrac{2^2.3^2.4^2......\left(n+1\right)^2}{3.8.15.....n\left(n+2\right)}\)
\(d=\dfrac{2.2.3.3.4.4......\left(n+1\right)\left(n+1\right)}{1.3.2.4.3.5......n\left(n+2\right)}\)
\(d=\dfrac{2.3.4......\left(n+1\right)}{1.2.3......n}.\dfrac{2.3.4.....\left(n+1\right)}{3.4.5.....\left(n+2\right)}\)
\(d=\left(n+1\right)\dfrac{2}{n+2}\)
\(d=\dfrac{2n+2}{n+2}\)