a) Để phân số \(\frac{26}{x+3}\) là số tự nhiên
<=> 26 \(⋮\) x + 3
=> x + 3 \(\in\) Ư(26) = { - 26 ; - 13 ; - 2 ; -1 ; 1 ; 2 ; 13 ; 26 }
Vì để phân số là số tự nhiên => Ta không nhận các giá trị âm
Vậy ta chỉ lấy các Ư(26) = { 1 ; 2 ; 13 ; 26 }
Ta có bảng sau
x+3 | 1 | 2 | 13 | 26 |
x | -2 | -1 | 10 | 23 |
Vậy x = - 2 ; -1 ; 10 ; 23
b) Để phân số \(\frac{x+6}{x+1}\) là 1 số tự nhiên
<=> x + 6 chia hết cho x + 1
=> ( x + 1 ) + 5 chia hết cho x + 1
=> x + 1 chia hết cho x + 1 ( điều này luôn luôn đúng với mọi x )
5 cũng phải chia hết cho x + 1
=> x + 1 \(\in\) Ư(5) = { -5 ; -1 ; 1 ; 5 }
Vì để phân số đạt giá trị tự nhiên , ta sẽ ko nhận giá trị âm
=> Ta chỉ nhận các Ư(5) ={ 1 ; 5 }
Ta có bảng sau :
x+1 | 1 | 5 |
x | 0 | 4 |
Vậy x = 0 ; 4
c) Để phân số \(\frac{x-2}{x+3}\) đạt giá trị tự nhiên
<=> x - 2 chia hết cho x + 3
=> ( x + 3 ) - 5 chia hết cho x - 3
=> x + 3 chia hết cho x - 3 ( điều này luôn luôn đúng với mọi x )
5 cũng phải chia hết cho x - 3
=> x - 3 \(\in\) Ư(5) = { - 5 ; -1 ; 1 ; 5 }
Để phân số là số tự nhiên , ta không nhận các giá trị âm
=> Ta chỉ nhận các giá trị là Ư(5) = { 1 ; 5 }
Ta có bảng sau :
x-3 | 1 | 5 |
x | 4 | 8 |
Vậy x = 4 ; 8
d) Để phân số \(\frac{2x+1}{x-3}\) đạt giá trị tự nhiên
<=> 2x + 1 chia hết cho x - 3
=> ( 2x - 6 ) + 7 chia hết cho x - 3
=> 2(x - 3) + 7 chia hết cho x - 3
=> 2(x - 3) chia hết cho x - 3 ( điều này luôn luôn đúng với mọi x )
7 cũng phải chia hết cho x - 3
=> x - 3 \(\in\) Ư(7) = { - 7 ; -1 ; 1 ; 7 }
Để phân số đạt giá trị tự nhiên , ta không nhận các giá trị âm
=> Ta chỉ nhận các giá trị là Ư(7) = { 1 ; 7 }
Ta có bảng sau :
x-3 | 1 | 7 |
x | 4 | 10 |
Vậy x = 4 ; 10