\(x^4-6x^2+8=0\\ \Leftrightarrow x^4-2x^2-4x^2+8=0\\ \Leftrightarrow x^2\left(x-2\right)-4\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)^2\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
\(F=\left\{-2;2\right\}\)
Ta có: \(x^4-6x^2+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)+2x^2\left(x-2\right)-2x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
Vậy \(F=\left\{2;-2;\sqrt{2};-\sqrt{2}\right\}\)