\(0,001=\frac{1}{1000}=\frac{1}{10^3}=10^{-3}\)
\(0,0001=\frac{1}{10000}=\frac{1}{10^4}=10^{-4}\)
\(0,00015=\frac{3}{20000}=\frac{3}{2}\times\frac{1}{10000}=\frac{3}{2}\times\frac{1}{10^4}=\frac{3}{2}\times10^{-4}\)
\(5^{-a}=\frac{1}{5^a}\)
\(3,5\times10^{-5}=3,5\times\frac{1}{10^5}\)
\(\left(\frac{2}{3}\right)^{-2}==\frac{1}{\left(\frac{2}{3}\right)^2}=\left(\frac{3}{2}\right)^2\)
\(10^{-3}=\frac{1}{10^3}=\frac{1}{1000}\)