a) x2+6x+9=x2+2.x.3+32=(x+3)2
b) x2+x+\(\dfrac{1}{4}\)=x2+2.x.\(\dfrac{1}{2}\)+\(\dfrac{1}{4}\)=(x+\(\dfrac{1}{2}\))2
c) 2xy2+x2y4+1=(xy2)2+2.xy2+1=(xy2+1)2
a) (x+3)2
b) (x+\(\dfrac{1}{2}\))2
c) (xy2+1)2
a)\(x^2+6x+9=x^2+2x.3+3^2=\left(x+3\right)^2\)
b)\(x^2+x+\dfrac{1}{4}=x^2+2x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=\left(x+\dfrac{1}{2}\right)^2\)
c)\(2xy^2+x^2y^4+1=x^2y^4+2xy^2+1\)\(=\left(xy^2\right)^2+2\left(xy^2\right).1+1^2=\left(xy^2+1\right)^2\)