Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC ( D khác B và C ). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất
Cho tam giác ABC vuông cân tại A. Trên cạnh AC lấy M bất kì (M khác A,C) . Trên cạnh AB lấy E sao cho AE=CM. Gọi O là trung điểm cạnh BC
a, CM tam giác OEM vuông cân
b, Đường thẳng qua A và song song với ME, cắt tia BM tại N. Chứng minh CN _|_ AC
c, Gọi H là giao điểm của OM và AN. Chứng minh rằng tích AH.AN không phụ thuộc vào vị trí M trên cạnh AC
Cho tam giác vuông ABC (A=90o). Một đường thảng song song với cạnh BC căt hai cạnh AB và AC theo thứ tự tại M và N, đường thẳng đi qua N và song song với AB cắt BC tại D. Cho biết AM=6cm;An=8cm;BM=4cm.
a)Tính độ dài các đoạn thẳng Mn,NC và BC
b)Tính diện tích hình bình hành BMND
Cho tam giác ABC có BC=3cm. Trên cạnh AB lấy điểm M sao cho AM=1/3 AB. Từ M kẻ đường thẳng song song với BC cắt AC tại N. Tính đoạn thẳng MN.
Cho tam giác ABC . Trên cạnh AB lấy điểm M , trên cạnh AC lấy điểm N sao cho \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\); đường trung tuyến AI (I thuộc BC ) cắt đoạn thẳng MN tại K
Chứng minh rằng KM =KN
Cho tam giác ABC vuông tại A, có AB < AC. Vẽ AH ⊥ BC (H ∈ BC)
a) Chứng minh: ∆HBA ∽ ∆ABC
b) Tính độ dài các cạnh BC và AH nếu AB = 9cm, AC = 12cm
c) Trên cạnh HC lấy điểm M sao cho HM = HA. Qua M vẽ đường thẳng vuông góc với cạnh BC cắt AC tại I. Qua C vẽ đường thẳng vuông góc với cạnh BC cắt tia phân giác của tại K. Chứng minh ba điểm H, I, K thẳng hàng
Cho tam giác ABC vuông tại A, có AB < AC. Vẽ AH ⊥ BC (H ∈ BC)
a) Chứng minh: ∆HBA ∽ ∆ABC
b) Tính độ dài các cạnh BC và AH nếu AB = 9cm, AC = 12cm
c) Trên cạnh HC lấy điểm M sao cho HM = HA. Qua M vẽ đường thẳng vuông góc với cạnh BC cắt AC tại I. Qua C vẽ đường thẳng vuông góc với cạnh BC cắt tia phân giác của tại K. Chứng minh ba điểm H, I, K thẳng hàng
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB=6cm, AC=8cm
a) C/M : tam giác ABC đồng dạng với tam giav HBA
b) Tính cạnh BC và cạnh AH
c) Trên cạnh AC lấy điểm E, từ E kẻ đường thẳng song song với BC và cắt AB tại D. Tìm vị trí của điểm E để CE + BD = DE
Bài 3 :Cho tam giác ABC vuông tại A. Một đường thẳng song song với BC cắt 2 cạnh AB và AC theo thứ tự tại M và N; đường thẳng qua N và song song với AB, cắt BC tại D. Cho biết AM = 6, AN = 8, BM = 4.
a) Tính độ dài MN, NC và BC
b) Tính diện tích hình bình hành BMND
cho tam giác ABC vuông cân tại A. Trên cạnh AC lấy M bất kì (M khác A,C) . Trên cạnh AB lấy E sao cho AE=CM. Gọi O là trung điểm cạnh BC
a, CM tam giác OEM vuông cân
b, Đường thẳng qua A và song song với ME, cắt tia BM tại N. Chứng minh CN _|_ AC
c, Gọi H là giao điểm của OM và AN. Chứng minh rằng tích AH.AN không phụ thuộc vào vị trí M trên cạnh AC