Cho hình bình hành ABCD, gọi O là giao điểm của 2 đường chéo và M,N lần lượt là trung điểm cuả AD,BC. BM và DN cắt AC lần lượt tại E và F.
a, Tứ giác BMDN là hình gì? Vì sao?
b, Chứng minh AE = EF = FC
c, Tính diện tích tam giác DBM, biết diện tích hình bình hành là 30 cm2
Giúp em với ạ
Cho hình bình hành ABCD (AD < AB), O là giao điểm hai đường chéo AC, BD. Gọi E, F lần lượt là hình chiếu của A và C trên BD.
a, Chứng minh tứ giác AECF là hình bình hành.
b, Gọi I là điểm đối xứng của A qua BD. Chứng minh EO là đường trung bình của tam giác AIC.
c, Chứng minh tứ giác CIDB là hình thang cân.
Cho tam giác nhọn ABC , Các đường cao BM và CN cắt nhau ở H. Gọi P là trung điểm của BC . Gọi D là điểm đối xứng của H qua P
a ) Chứng minh rằng : Tứ giác BIDCD là hình bình hành
b ) Chứng minh rằng tứ giác BMCD là hình thang vuông
c ) Nếu tứ giác BDCH là hình chữ nhật thì tam giác ABC là tam giác gì ? vì sao ?
Cho tam giác ABC, các đường trung tuyến BD và CE cắt nhau ở G. Gọi H là trung điểm của GB, K là trung điểm của GC
a) Chứng minh rằng tứ giác DEHK là hình bình hành
b) Tam giác ABC có điều kiện gì thì tứ giác DEHK là hình chữ nhật
c) Nếu các đường trung tuyến BD và CE vuông góc với nhau thì tứ giác DEHK là hình gì ?
Cho hình bình hành ABCD có E, F theo thứ tự là trung điểm của AB, CD
a) Tứ giác DEBF là hình gì ? Vì sao ?
b) Chứng minh rằng các đường thẳng AC, BD, EF cùng cắt nhau tại một điểm
c) Gọi giao điểm của AC với DE và BF theo thứ tứ là M và N. Chứng minh rằng tứ giác EMFN là hình bình hành
cho tam giác nhọn ABC các đường cao BM,CN cắt nhau ở H gọi P là trung điểm của BC gọi D là điểm đối xứng của H qua P a, chứng minh rằng tứ giác BDCH là hình bình hành b,chứng minh rằng tứ giác BMCD là hình thang vuông c,nếu tứ giác BDCH là hình thoi thì tam giác ABC là am giác j vì sao d, gọi E và G lần lượt là hình chiếu của BvàC trên đường thẳng M chứng minh EM=GM
cho tứ giác ABCD gọi E,F,G,H lần lượt là trung điểm của AB,BC,CD,DA.
a) chứng minh tứ giác EFGH là hình bình hành
b) Gọi O là trung điểm EG, chứng minh F đối xứng H qua O
c) các đường chéo AC, BD, của tứ giác ABCD có điều kiện tứ giác EFGH là hình chữ nhật
Cho hình bình hành ABCD, gọi O là giao điểm của hai đường chéo, E và F thứ tự là trung điểm của OD và OB.
1) Chứng minh: Tứ giác AECF là hình bình hành.
2) Tia AE cắt CD tại K, gọi H là trung điểm của KC. Chứng minh OH // CF.
3) Chứng minh : CF = 3EK