cho đường tròn (O) bán kính R , đường thẳng d không đi qua O và cắt đường tròn tại 2 điểm A và B, từ 1 điểm C thuộc đường thẳng d, A nằm giữa B và C, vẽ tiếp tuyến CN với đường tròn , N thuộc cung lớn AB . Gọi E là trung điểm của AB
a) cm 4 điểm C,E,O,N cùng thuộc 1 đường tròn
b) cm CN2 = CA.CB
c) Gọi H là hình chiếu của N trên OC . cm ˆOABOAB^= ˆCHACHA^.
Tia CO cắt đường tròn (O) tại 2 điểm D,I , I nằm giữa C và D. Cm IC.DH = DC.IH
Từ A ở bên ngoài đường tròn (O) vẽ tiếp tuyến AB với đường tròn ( B là tiếp điểm). Dây BC khác đường kính vuông góc với OA tại H.
a.Chứng minh rằng AC là tiếp tuyến của đường tròn (O)
b. Qua A vẽ cắt tuyến ADE của (O) ( D nằm giữa A và E). Gọi I là trung điểm của DE. Chứng minh rằng bổn điểm A; B: O: I cùng thuộc một đường tròn Giúp mình vs mn mình đang cần gấp đó ạ
Cho 3 điểm A,B,C theo thứ tự đó nằm trên cùng một đường thẳng. Vẽ đường tròn ( O;R ) có đường kính là BC. Từ A kẻ tiếp tuyến AM với đường tròn ( O ),( M là tiếp điểm). Tiếp tuyến tại B của đường tròn ( O ) cắt AM tại D. Từ O kẻ đường thẳng vuông góc với OD cắt đường thẳng AM ở E. Chứng minh rằng:
a) MD × ME=R ²
b) EC là tiếp tuyến của đường tròn ( O )
c) DM×AE=AD×EM
\(Cho đường tròn(O,R) và 1 điểm A nằm ngoài đường tròn. Từ A vẽ 2 tiếp tuyến AB và AC ( B,C là tiếp điểm). Kẻ đường kính BD, đường thẳng vuong góc với BD tại O cắt đường thẳng DC tại E a)C/m: OA ⊥ BC và DC//OA b) C/m AEDO là hình bình hành c) Đường thẳng BC cắt OA và OE lần lượt tại I và K. C/m IK.IC+OA.OI= R 2\)
Cho đường trong (O;R). Từ 1 điểm M nằm ngoài đường tròn vẽ 2 tiếp tuyến MA và MB (A:B là 2 tiếp điểm). Vẽ cát tuyến MCD với đường tròn (C nằm giữa M và D), gọi I là trung điểm của CD. Chứng minh A,B cùng nằm trên đường tròn đường kính OM
Từ một điểm A nằm ngoài đường tròn (O;R), vẽ hai tiếp tuyến AB, AC với đường tròn (B và C là các tiếp điểm).
1) Chứng minh rằng: 4 điểm A, B, C, O cùng nằm trên một đường tròn. 2) Chứng minh rằng: AO vuông góc BC tại trung điểm H của BC. 3) Chứng minh rằng: \(\dfrac{OB^2}{AC^2}=\dfrac{HO}{HA}\) 4) Từ điểm M nằm trên cung lớn BC, kẽ tiếp tuyến thứ 3 với đường tròn tâm O, tiếp tuyến này cắt AB, AC theo thứ tự tại D và E. Biết AD = 7cm, AE = 25cm, DE= 24cm. Tính độ dài các đoạn thẳng AB và BC.
Từ điểm A nằm ngoài đường tròn (O;R) với OA > 2R, kẻ các tiếp tuyến AB, AC của đường tròn (O) (B, C là các tiếp điểm). Vẽ đường kính BD của đường tròn (O) ; AD cắt đường tròn (O) tại E ( E khác D).
a) Chứng minh: OA ⊥ BC tại H và 4 điểm A, B, O, C cùng thuộc đường tròn.
b) Chứng minh: CD // OA và AH.AO = AE.AD
c) Gọi I là trung điểm của HA. Chứng minh ABI = BDH
ừ điểm A nằm ngoài đường tròn (O), kẻ 2 tiếp tuyến AB, AC đến đường tròn (O)
(B, C là 2 tiếp điểm).
a) Chứng minh: Bốn điểm O, B, A, C cùng thuộc 1 đường tròn và BC OA tại H.
b) Kẻ đường kính BD của đường tròn (O). Qua C vẽ đường thẳng vuông góc với AB,
đường thẳng này cắt OA tại E. Chứng minh: CD // OA và tứ giác OBEC là hình thoi.
c) Qua E vẽ đường thẳng a bất kỳ cắt đoạn thẳng AC. Lần lượt vẽ OM, DN, CP vuông
góc với đường thẳng a tại M, N, P. Chứng minh: DN = OM + CP.