từ điểm A nằm ngoài đường trong (O) vẽ hai tiếp tuyến AB,AC với đương tròn (B,C là hai tiếp điểm ) Kẻ đường kính CD của đường tròn (O)
Chứng minh OA vuông góc BC
chứng minh BD // OA
kẻ BH vuông góc CD gọi K là giao điểm BH và AD Chứng minh K là trung điểm của BH
Từ điểm A ở ngoài đường tròn (O;R) vẽ 2 tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Gọi H là chân đường vuông góc kẻ từ B đến đường kính CD. a) Chứng minh 4 điểm A, B, C, O cùng thuộc 1 đường tròn b) Chứng minh BD // OA c) Gọi giao điểm của BH và AD là I. Chứng minh I là trung điểm của BH.
Từ điểm A ở ngoài (O; R) vẽ hai tiếp tuyến AB, AC( B, C là hai tiếp điểm). Gọi H là giao điểm của OA và BC a) Chứng minh OA vuông góc BC và OH.OA = R2 b) Vẽ đường kính BE của (O), AE cắt (O) tại D. Chứng minh ED.EA = 4OH.OA c) Vẽ CI vuông góc BE tại I, AE cắt CI tại K. Chứng minh HK // BE.
Cho đường tròn(O,R) và 1 điểm A nằm ngoài đường tròn. Từ A vẽ 2 tiếp tuyến AB và AC ( B,C là tiếp điểm). Kẻ đường kính BD, đường thẳng vuông góc với BD tại O cắt đường thẳng DC tại E.
a)Chứng minh: OABC và DC//OA.
b) Chứng minh AEDO là hình bình hành.
c) Đường thẳng BC cắt OA và OE lần lượt tại I và K. Chứng minh: IK.IC+IA.OI=
cho đường tròn tâm O bán kính r và 1 điểm A sao cho OA bằng 2R, vẽ các tiếp tuyến AB và Ac với đường tròn kẻ đường kính kính BD a) chứng minh DC//OA b) cho đường trung trực của BD cắt AC và CD tại S và E. Cm OCEA là hình thang cân c) gọi I là giao điểm OA với (O). Cm SI à tiếp tuyến (O) d) tia SI cắt AB tại K. Cm tứ giác AKOS là hình thoi
Cho đường tròn tâm O bán kính R, dây BC khác đường kính, Hai tiếp tuyến của đường tròn (O;R) tại B và tại C cắt nhau tại A. Kẻ đường kính CD, kẻ BH vuông góc với CD tại H.
a) Chứng minh $AO \bot BC.$
b) Cho biết $R = 15, BC = 24 (cm).$ Tính AB, OA.
c) Chứng minh BC là tia phân giác $\widehat{ABH}.$
Em cần câu c thôi ạ.
Hình vẽ.
Từ điểm A ở ngoài đường tròn (O; R) sao cho OA = 3R vẽ tiếp tuyến AB với đường tròn (B là tiếp điểm) a) Tính độ dài của AB theo R. b) Kẻ tiếp tuyến thứ hai AC với đường tròn (O) (C là tiếp điểm). b.1. Tính số đo góc AOB (làm tròn kết quả đến phút), từ đó suy ra số đo góc BOC. b.2. Gọi H là giao điểm của BC và OA. Chứng minh BC vuông góc với OA tại H và tính độ dài của OH theo R.
Cho (O), từ điểm A nằm ngoài (O), kẻ hai tiếp tuyến AB, AC (B,C là tiếp điểm), I là giao điểm của OA và BC
a) Chứng minh \(BC=2BI\)
b) Kẻ đường kính CD, từ O kẻ đường thẳng vuông góc với AD tại H và cắt đường thẳng CB tại E. Chứng minh \(OH.OE=OI.OA\)
c) Chứng minh ED là tiếp tuyến của (O)