*) Chữ số hàng đơn vị có thể chọn: 5 lần (Do số chẵn mà)
*) Chữ số thứ 2 có thể chọn là: 9-1=8 ( lần)
*) Chứ số thứ 3 là: 8-1=7 ( lần)
.....
*) Chữ số thứ 7 là : 4-1=3 (lần)
=> Có số số là: 5.8.7.6.5.4.3=100800(số)
P/s: Không biết đúng không
Gọi \(A_0\), \(A_2\), \(A_4\), \(A_6\), \(A_8\) là tập hợp các số tự nhiên mỗi số gồm 7 chữ số khác nhau chọn trong 9 số trên và số tận cùng tương ứng là 0,2,4,6,8.
Gọi A là tập hợp các số cần tìm. Theo quy tắc cộng ta có
\(\left|A\right|\) = \(\left|A_0\right|\) + 4\(\left|A_2\right|\) (1)
(vì \(\left|A_2\right|\) = \(\left|A_4\right|\) = \(\left|A_6\right|\) = \(\left|A_8\right|\) do vai trò tương tự của \(A_2\), \(A_4\), \(A_6\), \(A_8\))
Dễ thấy \(\left|A_0\right|\) = \(A_8^6\) = 20160
Mỗi phần tử của tập hợp \(A_2\) có dạng \(\overline{a_1a_2a_3a_4a_5a_62_{ }}\) trong đó \(a_1\) \(\ne\) 0
Để chọn \(a_1\) có 7 cách (trừ 0 và 2)
chọn \(a_2\) có 7 cách
chọn \(a_3\) có 6 cách
chọn \(a_4\) có 5 cách
chọn \(a_5\) có 4 cách
chọn \(a_6\) có 3 cách
Theo quy tắc nhân \(\left|A_2\right|\) = 7.7.6.5.4.3 = 17640
Vậy thay vào (1), ta có \(\left|A\right|\) = 90750
goi so co 7 chu so la abcdefg (a khác 0)
vi so tu nhien la so chan
th1 :g=0 nen g có 1 cach chon
a co 8 cach chon