\(\dfrac{1+3\sqrt{2}-2\sqrt{3}}{\sqrt{6}+\sqrt{3}+\sqrt{2}}\)
\(=\dfrac{\left[1+\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)\right]\left[\sqrt{6}-\left(\sqrt{3}+\sqrt{2}\right)\right]}{\left[\sqrt{6}+\left(\sqrt{3}+\sqrt{2}\right)\right]\left[\sqrt{6}-\left(\sqrt{3}+\sqrt{2}\right)\right]}\)
Tử:
\(\left[1+\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)\right]\left[\sqrt{6}-\left(\sqrt{3}+\sqrt{2}\right)\right]\)
\(=\sqrt{6}-\left(\sqrt{3}+\sqrt{2}\right)+6\left(\sqrt{3}-\sqrt{2}\right)-\sqrt{6}\) (nhân phân phối)
\(=5\sqrt{3}-7\sqrt{2}\)
Mẫu:
\(\left[\sqrt{6}+\left(\sqrt{3}+\sqrt{2}\right)\right]\left[\sqrt{6}-\left(\sqrt{3}+\sqrt{2}\right)\right]\)
\(=6-\left(5+2\sqrt{6}\right)\)
\(=1-2\sqrt{6}\)
Ta có:
\(\dfrac{5\sqrt{3}-7\sqrt{2}}{1-2\sqrt{6}}\)
\(=\dfrac{\left(5\sqrt{3}-7\sqrt{2}\right)\left(1+2\sqrt{6}\right)}{1-24}\)
\(=\dfrac{5\sqrt{3}+30\sqrt{2}-7\sqrt{2}-28\sqrt{3}}{-23}\)
\(=\dfrac{-23\left(\sqrt{3}-\sqrt{2}\right)}{-23}\)
\(=\sqrt{3}-\sqrt{2}\)